This adds a `con` argument to `execute_command` which allows you to
specify the container to execute the command on. In most cases it leaves
it as `NULL` which makes it use the focused node. We only set it when
executing `for_window` criteria such as when a view maps. This means we
don't send unnecessary IPC focus events, and fixes a crash when the
criteria command is `move scratchpad` (because we can't give focus to a
hidden scratchpad container).
Each of the shell map handlers now check to see if the view has a
workspace. It won't have a workspace if criteria has moved it to the
scratchpad.
seat_execute_command needs to check the flags on `binding_copy`, as
`binding` will be a dangling pointer after a reload command.
handle_keyboard_key needs to set the next_repeat_binding for
non-reloads prior to executing the command in case the binding is
freed by the reload command.
Fixes#2568
The binding that gets stored in the keyboard's `repeat_binding` would
get freed on reload, leaving a dangling pointer.
Rather than attempt to unset the keyboard's `repeat_binding` along with
the other bindings, I opted to just not set it for the reload command
because there's no point in reloading repeatedly by holding the binding.
This disables repeat bindings for the reload command.
As we now need to detect whether it's a reload command in two places,
I've added a binding flag to track whether it's a reload or not.
If sway is reloaded using a bindsym which has multiple commands, it
failed to detect the reload command, didn't create a duplicate of the
binding and would crash because the reload command frees the bindings.
For example:
mode system {
bindsym r reload, mode default
}
In this example, the binding->command is "reload, mode default".
Fixes#2545
The mouse binding logic is inspired/copied from the
keyboard binding logic; we store a sorted list of the
currently pressed buttons, and trigger a binding when
the currently pressed (or just recently pressed, in
the case of a release binding) buttons, as well as
modifiers/container region, match those of a given
binding.
As the code to execute a binding is not very keyboard
specific, keyboard_execute_command is renamed to
seat_execute_command and moved to where the other
binding handling functions are. The call to
transaction_commit_dirty has been lifted out.
First, the existing sway_binding structure is given an
enumerated type code. As all flags to bindsym/bindcode
are boolean, a single uint32 is used to hold all flags.
The _BORDER, _CONTENTS, _TITLEBAR flags, when active,
indicate in which part of a container the binding can
trigger; to localize complexity, they do not overlap
with the command line arguments, which center around
_TITLEBAR being set by default.
The keyboard handling code is adjusted for this change,
as is binding_key_compare; note that BINDING_LOCKED
is *not* part of the key portion of the binding.
Next, list of mouse bindings is introduced and cleaned up.
Finally, the binding command parsing code is extended
to handle the case where bindsym is used to describe
a mouse binding rather than a keysym binding; the
difference between the two may be detected as late as
when the first key/button is parsed, or as early as
the first flag. As bindings can have multiple
keycodes/keysyms/buttons, mixed keysym/button sequences
are prohibited.
Sort the list comprising the set of keys for the binding in ascending
order. (Keyboard shortcuts depend only on the set of simultaneously
pressed keys, not their order, so this change should have no external
effect.) This simplifies comparisons between bindings.
Adds the --locked flag to bindsym and bindcode commands.
When a keyboard's associated seat has an exclusive client
(i.e, a screenlocker), then bindings are only executed if
they have the locked flag. When there is no such client,
this restriction is lifted.