serde support for valence_nbt + fixes. (#352)

## Description

- Reorganize `valence_nbt` and feature flag the different parts. SNBT
and binary serialization are each behind their own flags.
- Add optional serde support to `valence_nbt` behind the `serde` flag.
This is useful for end users working with `valence_nbt` and allows us to
simplify some code in `valence_biome` and `valence_dimension`.

Note that this includes a `Serializer` and `Deserializer` for `Compound`
and _not_ the binary and SNBT formats. In other words, it's not possible
to go directly from an arbitrary data format to binary NBT and vice
versa, but it _is_ possible to go to and from `Compound` and finish the
(de)serialization this way. I consider this an acceptable compromise
because writing fast and correct serialization routines for `Compound`
becomes more difficult when serde is in the way. Besides, the
intermediate `Compound` often needs to be created anyway.
- Fixed unsound uses of `std::mem::transmute` in `valence_nbt` and
elsewhere. Using `transmute` to cast between slice types is unsound
because slices are `#[repr(Rust)]` and the layouts are not guaranteed.
`slice::from_raw_parts` is used as the replacement.
This commit is contained in:
Ryan Johnson 2023-06-04 05:56:10 -07:00 committed by GitHub
parent 975014e76b
commit 6338fc6300
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
18 changed files with 1418 additions and 251 deletions

View file

@ -47,6 +47,7 @@ num-integer = "0.1.45"
owo-colors = "3.5.0"
parking_lot = "0.12.1"
paste = "1.0.11"
pretty_assertions = "1.3.0"
proc-macro2 = "1.0.56"
quote = "1.0.26"
rand = "0.8.5"
@ -84,7 +85,7 @@ valence_dimension.path = "crates/valence_dimension"
valence_entity.path = "crates/valence_entity"
valence_instance.path = "crates/valence_instance"
valence_inventory.path = "crates/valence_inventory"
valence_nbt = { path = "crates/valence_nbt", features = ["uuid"] }
valence_nbt = { path = "crates/valence_nbt" }
valence_network.path = "crates/valence_network"
valence_player_list.path = "crates/valence_player_list"
valence_registry.path = "crates/valence_registry"

View file

@ -56,7 +56,7 @@ pub enum ReadChunkError {
#[error(transparent)]
Io(#[from] io::Error),
#[error(transparent)]
Nbt(#[from] valence_nbt::Error),
Nbt(#[from] valence_nbt::binary::Error),
#[error("invalid chunk sector offset")]
BadSectorOffset,
#[error("invalid chunk size")]
@ -180,7 +180,7 @@ impl AnvilWorld {
b => return Err(ReadChunkError::UnknownCompressionScheme(b)),
};
let (data, _) = valence_nbt::from_binary_slice(&mut nbt_slice)?;
let (data, _) = Compound::from_binary(&mut nbt_slice)?;
if !nbt_slice.is_empty() {
return Err(ReadChunkError::IncompleteNbtRead);

View file

@ -24,7 +24,7 @@ serde_json.workspace = true
thiserror.workspace = true
tracing.workspace = true
uuid = { workspace = true, features = ["serde"] }
valence_nbt.workspace = true
valence_nbt = { workspace = true, features = ["binary"] }
valence_core_macros.workspace = true
url.workspace = true
base64.workspace = true

View file

@ -1,5 +1,6 @@
//! [`Encode`] and [`Decode`] impls on foreign types.
use core::slice;
use std::borrow::Cow;
use std::collections::{BTreeSet, HashSet};
use std::hash::{BuildHasher, Hash};
@ -27,8 +28,8 @@ impl Encode for bool {
fn encode_slice(slice: &[bool], mut w: impl Write) -> Result<()> {
// SAFETY: Bools have the same layout as u8.
let bytes = unsafe { slice::from_raw_parts(slice.as_ptr() as *const u8, slice.len()) };
// Bools are guaranteed to have the correct bit pattern.
let bytes: &[u8] = unsafe { mem::transmute(slice) };
Ok(w.write_all(bytes)?)
}
}
@ -64,7 +65,7 @@ impl Encode for i8 {
fn encode_slice(slice: &[i8], mut w: impl Write) -> Result<()> {
// SAFETY: i8 has the same layout as u8.
let bytes: &[u8] = unsafe { mem::transmute(slice) };
let bytes = unsafe { slice::from_raw_parts(slice.as_ptr() as *const u8, slice.len()) };
Ok(w.write_all(bytes)?)
}
}
@ -471,7 +472,6 @@ impl<const N: usize, T: Encode> Encode for [T; N] {
impl<'a, const N: usize, T: Decode<'a>> Decode<'a> for [T; N] {
fn decode(r: &mut &'a [u8]) -> Result<Self> {
// TODO: rewrite using std::array::try_from_fn when stabilized?
// TODO: specialization for [f64; 3] improved performance.
let mut data: [MaybeUninit<T>; N] = unsafe { MaybeUninit::uninit().assume_init() };
@ -539,9 +539,12 @@ impl<'a> Decode<'a> for &'a [u8] {
impl<'a> Decode<'a> for &'a [i8] {
fn decode(r: &mut &'a [u8]) -> Result<Self> {
let unsigned_bytes = <&[u8]>::decode(r)?;
let signed_bytes: &[i8] = unsafe { mem::transmute(unsigned_bytes) };
Ok(signed_bytes)
let bytes = <&[u8]>::decode(r)?;
// SAFETY: i8 and u8 have the same layout.
let bytes = unsafe { slice::from_raw_parts(bytes.as_ptr() as *const i8, bytes.len()) };
Ok(bytes)
}
}
@ -765,12 +768,12 @@ impl<'a> Decode<'a> for Uuid {
impl Encode for Compound {
fn encode(&self, w: impl Write) -> Result<()> {
Ok(valence_nbt::to_binary_writer(w, self, "")?)
Ok(self.to_binary(w, "")?)
}
}
impl Decode<'_> for Compound {
fn decode(r: &mut &[u8]) -> Result<Self> {
Ok(valence_nbt::from_binary_slice(r)?.0)
Ok(Self::from_binary(r)?.0)
}
}

View file

@ -10,11 +10,20 @@ version = "0.5.0"
edition.workspace = true
[features]
binary = ["dep:byteorder", "dep:cesu8"]
snbt = []
# When enabled, the order of fields in compounds are preserved.
preserve_order = ["dep:indexmap"]
serde = ["dep:serde", "dep:thiserror", "indexmap?/serde"]
[dependencies]
byteorder.workspace = true
cesu8.workspace = true
byteorder = { workspace = true, optional = true }
cesu8 = { workspace = true, optional = true }
indexmap = { workspace = true, optional = true }
serde = { workspace = true, features = ["derive"], optional = true }
thiserror = { workspace = true, optional = true }
uuid = { workspace = true, optional = true }
[dev-dependencies]
pretty_assertions.workspace = true
serde_json.workspace = true

View file

@ -5,48 +5,10 @@ format.
[Named Binary Tag]: https://minecraft.fandom.com/wiki/NBT_format
# Examples
Encode NBT data to its binary form. We are using the [`compound!`] macro to
conveniently construct [`Compound`] values.
```rust
use valence_nbt::{compound, to_binary_writer, List};
let c = compound! {
"byte" => 5_i8,
"string" => "hello",
"list_of_float" => List::Float(vec![
3.1415,
2.7182,
1.4142
]),
};
let mut buf = vec![];
to_binary_writer(&mut buf, &c, "").unwrap();
```
Decode NBT data from its binary form.
```rust
use valence_nbt::{compound, from_binary_slice};
let some_bytes = [10, 0, 0, 3, 0, 3, 105, 110, 116, 0, 0, 222, 173, 0];
let expected_value = compound! {
"int" => 0xdead
};
let (nbt, root_name) = from_binary_slice(&mut some_bytes.as_slice()).unwrap();
assert_eq!(nbt, expected_value);
assert_eq!(root_name, "");
```
# Features
- `binary`: Adds support for serializing and deserializing in Java edition's binary format.
- `snbt`: Adds support for serializing and deserializing in "stringified" format.
- `preserve_order`: Causes the order of fields in [`Compound`]s to be
preserved during insertion and deletion at a slight cost to performance.
The iterators on `Compound` can then implement [`DoubleEndedIterator`].
- `serde` Adds support for [`serde`](https://docs.rs/serde/latest/serde/)

View file

@ -0,0 +1,48 @@
//! Support for serializing and deserializing compounds in Java edition's binary
//! format.
//!
//! # Examples
//!
//! ```
//! use valence_nbt::{compound, Compound, List};
//!
//! let c = compound! {
//! "byte" => 5_i8,
//! "string" => "hello",
//! "list_of_float" => List::Float(vec![
//! 3.1415,
//! 2.7182,
//! 1.4142
//! ]),
//! };
//!
//! let mut buf = vec![];
//!
//! c.to_binary(&mut buf, "").unwrap();
//! ```
//!
//! Decode NBT data from its binary form.
//!
//! ```
//! use valence_nbt::{compound, Compound};
//!
//! let some_bytes = [10, 0, 0, 3, 0, 3, 105, 110, 116, 0, 0, 222, 173, 0];
//!
//! let expected_value = compound! {
//! "int" => 0xdead
//! };
//!
//! let (nbt, root_name) = Compound::from_binary(&mut some_bytes.as_slice()).unwrap();
//!
//! assert_eq!(nbt, expected_value);
//! assert_eq!(root_name, "");
//! ```
mod decode;
mod encode;
mod error;
mod modified_utf8;
#[cfg(test)]
mod tests;
pub use error::*;

View file

@ -1,77 +1,88 @@
use std::io::Write;
use std::slice;
use byteorder::{BigEndian, WriteBytesExt};
use super::{modified_utf8, Error, Result};
use crate::tag::Tag;
use crate::{modified_utf8, Compound, Error, List, Result, Value};
use crate::{Compound, List, Value};
/// Encodes uncompressed NBT binary data to the provided writer.
///
/// Only compounds are permitted at the top level. This is why the function
/// accepts a [`Compound`] reference rather than a [`Value`].
///
/// Additionally, the root compound can be given a name. Typically the empty
/// string `""` is used.
pub fn to_binary_writer<W: Write>(writer: W, compound: &Compound, root_name: &str) -> Result<()> {
let mut state = EncodeState { writer };
impl Compound {
/// Encodes uncompressed NBT binary data to the provided writer.
///
/// Only compounds are permitted at the top level. This is why the function
/// accepts a [`Compound`] reference rather than a [`Value`].
///
/// Additionally, the root compound can be given a name. Typically the empty
/// string `""` is used.
pub fn to_binary<W: Write>(&self, writer: W, root_name: &str) -> Result<()> {
let mut state = EncodeState { writer };
state.write_tag(Tag::Compound)?;
state.write_string(root_name)?;
state.write_compound(compound)?;
state.write_tag(Tag::Compound)?;
state.write_string(root_name)?;
state.write_compound(self)?;
Ok(())
}
Ok(())
}
pub(crate) fn written_size(compound: &Compound, root_name: &str) -> usize {
fn value_size(val: &Value) -> usize {
match val {
Value::Byte(_) => 1,
Value::Short(_) => 2,
Value::Int(_) => 4,
Value::Long(_) => 8,
Value::Float(_) => 4,
Value::Double(_) => 8,
Value::ByteArray(ba) => 4 + ba.len(),
Value::String(s) => string_size(s),
Value::List(l) => list_size(l),
Value::Compound(c) => compound_size(c),
Value::IntArray(ia) => 4 + ia.len() * 4,
Value::LongArray(la) => 4 + la.len() * 8,
/// Returns the number of bytes that will be written when
/// [`Compound::to_binary`] is called with this compound and root name.
///
/// If `to_binary` results in `Ok`, the exact number of bytes
/// reported by this function will have been written. If the result is
/// `Err`, then the reported count will be greater than or equal to the
/// number of bytes that have actually been written.
pub fn written_size(&self, root_name: &str) -> usize {
fn value_size(val: &Value) -> usize {
match val {
Value::Byte(_) => 1,
Value::Short(_) => 2,
Value::Int(_) => 4,
Value::Long(_) => 8,
Value::Float(_) => 4,
Value::Double(_) => 8,
Value::ByteArray(ba) => 4 + ba.len(),
Value::String(s) => string_size(s),
Value::List(l) => list_size(l),
Value::Compound(c) => compound_size(c),
Value::IntArray(ia) => 4 + ia.len() * 4,
Value::LongArray(la) => 4 + la.len() * 8,
}
}
fn list_size(l: &List) -> usize {
let elems_size = match l {
List::End => 0,
List::Byte(b) => b.len(),
List::Short(s) => s.len() * 2,
List::Int(i) => i.len() * 4,
List::Long(l) => l.len() * 8,
List::Float(f) => f.len() * 4,
List::Double(d) => d.len() * 8,
List::ByteArray(ba) => ba.iter().map(|b| 4 + b.len()).sum(),
List::String(s) => s.iter().map(|s| string_size(s)).sum(),
List::List(l) => l.iter().map(list_size).sum(),
List::Compound(c) => c.iter().map(compound_size).sum(),
List::IntArray(i) => i.iter().map(|i| 4 + i.len() * 4).sum(),
List::LongArray(l) => l.iter().map(|l| 4 + l.len() * 8).sum(),
};
1 + 4 + elems_size
}
fn string_size(s: &str) -> usize {
2 + modified_utf8::encoded_len(s)
}
fn compound_size(c: &Compound) -> usize {
c.iter()
.map(|(k, v)| 1 + string_size(k) + value_size(v))
.sum::<usize>()
+ 1
}
1 + string_size(root_name) + compound_size(self)
}
fn list_size(l: &List) -> usize {
let elems_size = match l {
List::End => 0,
List::Byte(b) => b.len(),
List::Short(s) => s.len() * 2,
List::Int(i) => i.len() * 4,
List::Long(l) => l.len() * 8,
List::Float(f) => f.len() * 4,
List::Double(d) => d.len() * 8,
List::ByteArray(ba) => ba.iter().map(|b| 4 + b.len()).sum(),
List::String(s) => s.iter().map(|s| string_size(s)).sum(),
List::List(l) => l.iter().map(list_size).sum(),
List::Compound(c) => c.iter().map(compound_size).sum(),
List::IntArray(i) => i.iter().map(|i| 4 + i.len() * 4).sum(),
List::LongArray(l) => l.iter().map(|l| 4 + l.len() * 8).sum(),
};
1 + 4 + elems_size
}
fn string_size(s: &str) -> usize {
2 + modified_utf8::encoded_len(s)
}
fn compound_size(c: &Compound) -> usize {
c.iter()
.map(|(k, v)| 1 + string_size(k) + value_size(v))
.sum::<usize>()
+ 1
}
1 + string_size(root_name) + compound_size(compound)
}
struct EncodeState<W> {
@ -136,7 +147,7 @@ impl<W: Write> EncodeState<W> {
}
// SAFETY: i8 has the same layout as u8.
let bytes: &[u8] = unsafe { std::mem::transmute(bytes) };
let bytes = unsafe { slice::from_raw_parts(bytes.as_ptr() as *const u8, bytes.len()) };
Ok(self.writer.write_all(bytes)?)
}
@ -187,7 +198,7 @@ impl<W: Write> EncodeState<W> {
}
// SAFETY: i8 has the same layout as u8.
let bytes: &[u8] = unsafe { std::mem::transmute(bl.as_slice()) };
let bytes = unsafe { slice::from_raw_parts(bl.as_ptr() as *const u8, bl.len()) };
Ok(self.writer.write_all(bytes)?)
}

View file

@ -3,36 +3,39 @@ use std::mem;
use byteorder::{BigEndian, ReadBytesExt};
use cesu8::Cesu8DecodingError;
use super::{Error, Result};
use crate::tag::Tag;
use crate::{Compound, Error, List, Result, Value};
use crate::{Compound, List, Value};
/// Decodes uncompressed NBT binary data from the provided slice.
///
/// The string returned is the name of the root compound.
pub fn from_binary_slice(slice: &mut &[u8]) -> Result<(Compound, String)> {
let mut state = DecodeState { slice, depth: 0 };
impl Compound {
/// Decodes uncompressed NBT binary data from the provided slice.
///
/// The string returned in the tuple is the name of the root compound
/// (typically the empty string).
pub fn from_binary(slice: &mut &[u8]) -> Result<(Self, String)> {
let mut state = DecodeState { slice, depth: 0 };
let root_tag = state.read_tag()?;
let root_tag = state.read_tag()?;
// For cases such as Block Entity Data in the
// ChunkUpdateAndUpdateLight Packet
// https://wiki.vg/Protocol#Chunk_Data_and_Update_Light
if root_tag == Tag::End {
return Ok((Compound::new(), String::new()));
// For cases such as Block Entity Data in the chunk packet.
// https://wiki.vg/Protocol#Chunk_Data_and_Update_Light
if root_tag == Tag::End {
return Ok((Compound::new(), String::new()));
}
if root_tag != Tag::Compound {
return Err(Error::new_owned(format!(
"expected root tag for compound (got {root_tag})",
)));
}
let root_name = state.read_string()?;
let root = state.read_compound()?;
debug_assert_eq!(state.depth, 0);
Ok((root, root_name))
}
if root_tag != Tag::Compound {
return Err(Error::new_owned(format!(
"expected root tag for compound (got {root_tag})",
)));
}
let root_name = state.read_string()?;
let root = state.read_compound()?;
debug_assert_eq!(state.depth, 0);
Ok((root, root_name))
}
/// Maximum recursion depth to prevent overflowing the call stack.

View file

@ -2,7 +2,9 @@ use std::error::Error as StdError;
use std::fmt::{Display, Formatter};
use std::io;
/// Errors that can occur when encoding or decoding.
pub type Result<T> = std::result::Result<T, Error>;
/// Errors that can occur when encoding or decoding binary NBT.
#[derive(Debug)]
pub struct Error {
/// Box this to keep the size of `Result<T, Error>` small.

View file

@ -1,5 +1,5 @@
use crate::tag::Tag;
use crate::{compound, from_binary_slice, to_binary_writer, Compound, List, Value};
use crate::{compound, Compound, List, Value};
const ROOT_NAME: &str = "The root name‽";
@ -9,11 +9,11 @@ fn round_trip() {
let compound = example_compound();
to_binary_writer(&mut buf, &compound, ROOT_NAME).unwrap();
compound.to_binary(&mut buf, ROOT_NAME).unwrap();
println!("{buf:?}");
let (decoded, root_name) = from_binary_slice(&mut buf.as_slice()).unwrap();
let (decoded, root_name) = Compound::from_binary(&mut buf.as_slice()).unwrap();
assert_eq!(root_name, ROOT_NAME);
assert_eq!(compound, decoded);
@ -28,7 +28,7 @@ fn check_min_sizes() {
let dbg = format!("{min_val:?}");
let mut buf = vec![];
to_binary_writer(&mut buf, &compound!("" => min_val), "").unwrap();
compound!("" => min_val).to_binary(&mut buf, "").unwrap();
assert_eq!(
expected_size,
@ -65,7 +65,7 @@ fn deeply_nested_compound_decode() {
buf.push(Tag::End as u8); // End root compound
// Should not overflow the stack
let _ = from_binary_slice(&mut buf.as_slice());
let _ = Compound::from_binary(&mut buf.as_slice());
}
#[test]
@ -84,7 +84,7 @@ fn deeply_nested_list_decode() {
buf.push(Tag::End as u8); // End root compound
// Should not overflow the stack
let _ = from_binary_slice(&mut buf.as_slice());
let _ = Compound::from_binary(&mut buf.as_slice());
}
#[test]
@ -92,26 +92,11 @@ fn correct_length() {
let c = example_compound();
let mut buf = vec![];
to_binary_writer(&mut buf, &c, "abc").unwrap();
c.to_binary(&mut buf, "abc").unwrap();
assert_eq!(c.written_size("abc"), buf.len());
}
#[cfg(feature = "preserve_order")]
#[test]
fn preserves_order() {
let letters = ["g", "b", "d", "e", "h", "z", "m", "a", "q"];
let mut c = Compound::new();
for l in letters {
c.insert(l, 0_i8);
}
for (k, l) in c.keys().zip(letters) {
assert_eq!(k, l);
}
}
fn example_compound() -> Compound {
fn inner() -> Compound {
compound! {

View file

@ -4,11 +4,15 @@ use std::hash::Hash;
use std::iter::FusedIterator;
use std::ops::{Index, IndexMut};
use crate::to_binary_writer::written_size;
use crate::Value;
/// A map type with [`String`] keys and [`Value`] values.
#[derive(Clone, PartialEq, Default)]
#[cfg_attr(
feature = "serde",
derive(serde::Serialize, serde::Deserialize),
serde(transparent)
)]
pub struct Compound {
map: Map,
}
@ -19,74 +23,6 @@ type Map = std::collections::BTreeMap<String, Value>;
#[cfg(feature = "preserve_order")]
type Map = indexmap::IndexMap<String, Value>;
impl Compound {
/// Returns the number of bytes that will be written when
/// [`to_binary_writer`] is called with this compound and root name.
///
/// If [`to_binary_writer`] results in `Ok`, the exact number of bytes
/// reported by this function will have been written. If the result is
/// `Err`, then the reported count will be greater than or equal to the
/// number of bytes that have actually been written.
///
/// [`to_binary_writer`]: crate::to_binary_writer()
pub fn written_size(&self, root_name: &str) -> usize {
written_size(self, root_name)
}
/// Inserts all items from `other` into `self` recursively.
///
/// # Example
///
/// ```
/// use valence_nbt::compound;
///
/// let mut this = compound! {
/// "foo" => 10,
/// "bar" => compound! {
/// "baz" => 20,
/// }
/// };
///
/// let other = compound! {
/// "foo" => 15,
/// "bar" => compound! {
/// "quux" => "hello",
/// }
/// };
///
/// this.merge(other);
///
/// assert_eq!(
/// this,
/// compound! {
/// "foo" => 15,
/// "bar" => compound! {
/// "baz" => 20,
/// "quux" => "hello",
/// }
/// }
/// );
/// ```
pub fn merge(&mut self, other: Compound) {
for (k, v) in other {
match (self.entry(k), v) {
(Entry::Occupied(mut oe), Value::Compound(other)) => {
if let Value::Compound(this) = oe.get_mut() {
// Insert compound recursively.
this.merge(other);
}
}
(Entry::Occupied(mut oe), value) => {
oe.insert(value);
}
(Entry::Vacant(ve), value) => {
ve.insert(value);
}
}
}
}
}
impl fmt::Debug for Compound {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.map.fmt(f)
@ -241,6 +177,59 @@ impl Compound {
{
self.map.retain(f)
}
/// Inserts all items from `other` into `self` recursively.
///
/// # Example
///
/// ```
/// use valence_nbt::compound;
///
/// let mut this = compound! {
/// "foo" => 10,
/// "bar" => compound! {
/// "baz" => 20,
/// }
/// };
///
/// let other = compound! {
/// "foo" => 15,
/// "bar" => compound! {
/// "quux" => "hello",
/// }
/// };
///
/// this.merge(other);
///
/// assert_eq!(
/// this,
/// compound! {
/// "foo" => 15,
/// "bar" => compound! {
/// "baz" => 20,
/// "quux" => "hello",
/// }
/// }
/// );
/// ```
pub fn merge(&mut self, other: Compound) {
for (k, v) in other {
match (self.entry(k), v) {
(Entry::Occupied(mut oe), Value::Compound(other)) => {
if let Value::Compound(this) = oe.get_mut() {
// Insert compound recursively.
this.merge(other);
}
}
(Entry::Occupied(mut oe), value) => {
oe.insert(value);
}
(Entry::Vacant(ve), value) => {
ve.insert(value);
}
}
}
}
}
impl Extend<(String, Value)> for Compound {
@ -502,3 +491,23 @@ pub struct ValuesMut<'a> {
}
impl_iterator_traits!((ValuesMut<'a>) => &'a mut Value);
#[cfg(test)]
mod tests {
#[cfg(feature = "preserve_order")]
#[test]
fn compound_preserves_order() {
use super::*;
let letters = ["g", "b", "d", "e", "h", "z", "m", "a", "q"];
let mut c = Compound::new();
for l in letters {
c.insert(l, 0_i8);
}
for (k, l) in c.keys().zip(letters) {
assert_eq!(k, l);
}
}
}

View file

@ -18,25 +18,18 @@
)]
pub use compound::Compound;
pub use error::Error;
pub use from_binary_slice::from_binary_slice;
pub use tag::Tag;
pub use to_binary_writer::to_binary_writer;
pub use value::{List, Value};
#[cfg(feature = "binary")]
pub mod binary;
pub mod compound;
mod error;
mod from_binary_slice;
mod modified_utf8;
#[cfg(feature = "serde")]
pub mod serde;
#[cfg(feature = "snbt")]
pub mod snbt;
mod to_binary_writer;
pub mod value;
mod tag;
#[cfg(test)]
mod tests;
type Result<T> = std::result::Result<T, Error>;
pub mod value;
/// A convenience macro for constructing [`Compound`]s.
///

View file

@ -0,0 +1,160 @@
use std::fmt;
use std::mem::ManuallyDrop;
pub use ser::*;
use thiserror::Error;
mod de;
mod ser;
/// Errors that can occur while serializing or deserializing.
#[derive(Clone, Error, Debug)]
#[error("{0}")]
pub struct Error(Box<str>);
impl Error {
fn new(s: impl Into<Box<str>>) -> Self {
Self(s.into())
}
}
impl serde::de::Error for Error {
fn custom<T>(msg: T) -> Self
where
T: fmt::Display,
{
Self::new(format!("{msg}"))
}
}
impl serde::ser::Error for Error {
fn custom<T>(msg: T) -> Self
where
T: fmt::Display,
{
Self::new(format!("{msg}"))
}
}
#[inline]
fn u8_vec_to_i8_vec(vec: Vec<u8>) -> Vec<i8> {
// SAFETY: Layouts of u8 and i8 are the same and we're being careful not to drop
// the original vec after calling Vec::from_raw_parts.
unsafe {
let mut vec = ManuallyDrop::new(vec);
Vec::from_raw_parts(vec.as_mut_ptr() as *mut i8, vec.len(), vec.capacity())
}
}
#[inline]
fn i8_vec_to_u8_vec(vec: Vec<i8>) -> Vec<u8> {
// SAFETY: Layouts of u8 and i8 are the same and we're being careful not to drop
// the original vec after calling Vec::from_raw_parts.
unsafe {
let mut vec = ManuallyDrop::new(vec);
Vec::from_raw_parts(vec.as_mut_ptr() as *mut u8, vec.len(), vec.capacity())
}
}
#[cfg(test)]
mod tests {
use pretty_assertions::assert_eq;
use serde::{Deserialize, Serialize};
use serde_json::json;
use super::*;
use crate::{compound, Compound, List};
#[derive(Serialize, Deserialize, PartialEq, Debug)]
struct Struct {
foo: i32,
bar: StructInner,
baz: String,
quux: Vec<f32>,
}
#[derive(Serialize, Deserialize, PartialEq, Debug)]
struct StructInner {
a: bool,
b: i64,
c: Vec<Vec<i32>>,
d: Vec<StructInner>,
}
fn make_struct() -> Struct {
Struct {
foo: i32::MIN,
bar: StructInner {
a: true,
b: 123456789,
c: vec![vec![1, 2, 3], vec![4, 5, 6]],
d: vec![],
},
baz: "🤨".into(),
quux: vec![std::f32::consts::PI, f32::MAX, f32::MIN],
}
}
fn make_compound() -> Compound {
compound! {
"foo" => i32::MIN,
"bar" => compound! {
"a" => true,
"b" => 123456789_i64,
"c" => List::IntArray(vec![vec![1, 2, 3], vec![4, 5, 6]]),
"d" => List::End,
},
"baz" => "🤨",
"quux" => List::Float(vec![
std::f32::consts::PI,
f32::MAX,
f32::MIN,
]),
}
}
fn make_json() -> serde_json::Value {
json!({
"foo": i32::MIN,
"bar": {
"a": true,
"b": 123456789_i64,
"c": [[1, 2, 3], [4, 5, 6]],
"d": []
},
"baz": "🤨",
"quux": [
std::f32::consts::PI,
f32::MAX,
f32::MIN,
]
})
}
#[test]
fn struct_to_compound() {
let c = make_struct().serialize(CompoundSerializer).unwrap();
assert_eq!(c, make_compound());
}
#[test]
fn compound_to_struct() {
let s = Struct::deserialize(make_compound()).unwrap();
assert_eq!(s, make_struct());
}
#[test]
fn compound_to_json() {
let mut j = serde_json::to_value(make_compound()).unwrap();
// Bools map to bytes in NBT, but the result should be the same otherwise.
let p = j.pointer_mut("/bar/a").unwrap();
assert_eq!(*p, serde_json::Value::from(1));
*p = true.into();
assert_eq!(j, make_json());
}
}

View file

@ -0,0 +1,356 @@
use std::{fmt, slice};
use serde::de::value::{MapAccessDeserializer, MapDeserializer, SeqAccessDeserializer};
use serde::de::{self, IntoDeserializer, SeqAccess, Visitor};
use serde::{forward_to_deserialize_any, Deserialize, Deserializer};
use super::Error;
use crate::serde::{i8_vec_to_u8_vec, u8_vec_to_i8_vec};
use crate::{Compound, List, Value};
impl<'de> Deserialize<'de> for Value {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
struct ValueVisitor;
impl<'de> Visitor<'de> for ValueVisitor {
type Value = Value;
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
write!(formatter, "a valid NBT type")
}
fn visit_bool<E>(self, v: bool) -> Result<Self::Value, E>
where
E: de::Error,
{
Ok(Value::Byte(v as _))
}
fn visit_i8<E>(self, v: i8) -> Result<Self::Value, E>
where
E: de::Error,
{
Ok(Value::Byte(v))
}
fn visit_i16<E>(self, v: i16) -> Result<Self::Value, E>
where
E: de::Error,
{
Ok(Value::Short(v))
}
fn visit_i32<E>(self, v: i32) -> Result<Self::Value, E>
where
E: de::Error,
{
Ok(Value::Int(v))
}
fn visit_i64<E>(self, v: i64) -> Result<Self::Value, E>
where
E: de::Error,
{
Ok(Value::Long(v))
}
fn visit_u8<E>(self, v: u8) -> Result<Self::Value, E>
where
E: de::Error,
{
Ok(Value::Byte(v as _))
}
fn visit_u16<E>(self, v: u16) -> Result<Self::Value, E>
where
E: de::Error,
{
Ok(Value::Short(v as _))
}
fn visit_u32<E>(self, v: u32) -> Result<Self::Value, E>
where
E: de::Error,
{
Ok(Value::Int(v as _))
}
fn visit_u64<E>(self, v: u64) -> Result<Self::Value, E>
where
E: de::Error,
{
Ok(Value::Long(v as _))
}
fn visit_f32<E>(self, v: f32) -> Result<Self::Value, E>
where
E: de::Error,
{
Ok(Value::Float(v))
}
fn visit_f64<E>(self, v: f64) -> Result<Self::Value, E>
where
E: de::Error,
{
Ok(Value::Double(v))
}
fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
where
E: de::Error,
{
Ok(Value::String(v.into()))
}
fn visit_string<E>(self, v: String) -> Result<Self::Value, E>
where
E: de::Error,
{
Ok(Value::String(v))
}
fn visit_bytes<E>(self, v: &[u8]) -> Result<Self::Value, E>
where
E: de::Error,
{
let slice: &[i8] =
unsafe { slice::from_raw_parts(v.as_ptr() as *const i8, v.len()) };
Ok(Value::ByteArray(slice.into()))
}
fn visit_byte_buf<E>(self, v: Vec<u8>) -> Result<Self::Value, E>
where
E: de::Error,
{
Ok(Value::ByteArray(u8_vec_to_i8_vec(v)))
}
fn visit_seq<A>(self, seq: A) -> Result<Self::Value, A::Error>
where
A: de::SeqAccess<'de>,
{
Ok(List::deserialize(SeqAccessDeserializer::new(seq))?.into())
}
fn visit_map<A>(self, map: A) -> Result<Self::Value, A::Error>
where
A: de::MapAccess<'de>,
{
Ok(Compound::deserialize(MapAccessDeserializer::new(map))?.into())
}
}
deserializer.deserialize_any(ValueVisitor)
}
}
impl<'de> Deserialize<'de> for List {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
struct ListVisitor;
impl<'de> Visitor<'de> for ListVisitor {
type Value = List;
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
write!(formatter, "a sequence or bytes")
}
fn visit_seq<A>(self, mut seq: A) -> Result<Self::Value, A::Error>
where
A: de::SeqAccess<'de>,
{
match seq.next_element::<Value>()? {
Some(v) => match v {
Value::Byte(v) => deserialize_seq_remainder(v, seq),
Value::Short(v) => deserialize_seq_remainder(v, seq),
Value::Int(v) => deserialize_seq_remainder(v, seq),
Value::Long(v) => deserialize_seq_remainder(v, seq),
Value::Float(v) => deserialize_seq_remainder(v, seq),
Value::Double(v) => deserialize_seq_remainder(v, seq),
Value::ByteArray(v) => deserialize_seq_remainder(v, seq),
Value::String(v) => deserialize_seq_remainder(v, seq),
Value::List(v) => deserialize_seq_remainder(v, seq),
Value::Compound(v) => deserialize_seq_remainder(v, seq),
Value::IntArray(v) => deserialize_seq_remainder(v, seq),
Value::LongArray(v) => deserialize_seq_remainder(v, seq),
},
None => Ok(List::End),
}
}
fn visit_byte_buf<E>(self, v: Vec<u8>) -> Result<Self::Value, E>
where
E: de::Error,
{
Ok(List::Byte(u8_vec_to_i8_vec(v)))
}
fn visit_bytes<E>(self, v: &[u8]) -> Result<Self::Value, E>
where
E: de::Error,
{
let bytes: &[i8] =
unsafe { slice::from_raw_parts(v.as_ptr() as *const i8, v.len()) };
Ok(List::Byte(bytes.into()))
}
}
deserializer.deserialize_seq(ListVisitor)
}
}
/// Deserializes the remainder of a sequence after having
/// determined the type of the first element.
fn deserialize_seq_remainder<'de, T, A, R>(first: T, mut seq: A) -> Result<R, A::Error>
where
T: Deserialize<'de>,
Vec<T>: Into<R>,
A: de::SeqAccess<'de>,
{
let mut vec = match seq.size_hint() {
Some(n) => Vec::with_capacity(n + 1),
None => Vec::new(),
};
vec.push(first);
while let Some(v) = seq.next_element()? {
vec.push(v);
}
Ok(vec.into())
}
impl<'de> Deserializer<'de> for Compound {
type Error = Error;
fn deserialize_any<V>(self, visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
visitor.visit_map(MapDeserializer::new(self.into_iter()))
}
forward_to_deserialize_any! {
bool i8 i16 i32 i64 i128 u8 u16 u32 u64 u128 f32 f64 char str string
bytes byte_buf option unit unit_struct newtype_struct seq tuple
tuple_struct map struct enum identifier ignored_any
}
}
impl<'de> IntoDeserializer<'de, Error> for Compound {
type Deserializer = Self;
fn into_deserializer(self) -> Self::Deserializer {
self
}
}
impl<'de> Deserializer<'de> for Value {
type Error = Error;
fn deserialize_any<V>(self, visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
match self {
Value::Byte(v) => visitor.visit_i8(v),
Value::Short(v) => visitor.visit_i16(v),
Value::Int(v) => visitor.visit_i32(v),
Value::Long(v) => visitor.visit_i64(v),
Value::Float(v) => visitor.visit_f32(v),
Value::Double(v) => visitor.visit_f64(v),
Value::ByteArray(v) => visitor.visit_byte_buf(i8_vec_to_u8_vec(v)),
Value::String(v) => visitor.visit_string(v),
Value::List(v) => v.deserialize_any(visitor),
Value::Compound(v) => v.into_deserializer().deserialize_any(visitor),
Value::IntArray(v) => v.into_deserializer().deserialize_any(visitor),
Value::LongArray(v) => v.into_deserializer().deserialize_any(visitor),
}
}
fn deserialize_bool<V>(self, visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
match self {
Value::Byte(b) => visitor.visit_bool(b != 0),
_ => self.deserialize_any(visitor),
}
}
forward_to_deserialize_any! {
i8 i16 i32 i64 i128 u8 u16 u32 u64 u128 f32 f64 char str string
bytes byte_buf option unit unit_struct newtype_struct seq tuple
tuple_struct map struct enum identifier ignored_any
}
}
impl<'de> IntoDeserializer<'de, Error> for Value {
type Deserializer = Self;
fn into_deserializer(self) -> Self::Deserializer {
self
}
}
impl<'de> Deserializer<'de> for List {
type Error = Error;
fn deserialize_any<V>(self, visitor: V) -> Result<V::Value, Self::Error>
where
V: Visitor<'de>,
{
struct EndSeqAccess;
impl<'de> SeqAccess<'de> for EndSeqAccess {
type Error = Error;
fn next_element_seed<T>(&mut self, _seed: T) -> Result<Option<T::Value>, Self::Error>
where
T: de::DeserializeSeed<'de>,
{
Ok(None)
}
}
match self {
List::End => visitor.visit_seq(EndSeqAccess),
List::Byte(v) => visitor.visit_byte_buf(i8_vec_to_u8_vec(v)),
List::Short(v) => v.into_deserializer().deserialize_any(visitor),
List::Int(v) => v.into_deserializer().deserialize_any(visitor),
List::Long(v) => v.into_deserializer().deserialize_any(visitor),
List::Float(v) => v.into_deserializer().deserialize_any(visitor),
List::Double(v) => v.into_deserializer().deserialize_any(visitor),
List::ByteArray(v) => v.into_deserializer().deserialize_any(visitor),
List::String(v) => v.into_deserializer().deserialize_any(visitor),
List::List(v) => v.into_deserializer().deserialize_any(visitor),
List::Compound(v) => v.into_deserializer().deserialize_any(visitor),
List::IntArray(v) => v.into_deserializer().deserialize_any(visitor),
List::LongArray(v) => v.into_deserializer().deserialize_any(visitor),
}
}
forward_to_deserialize_any! {
bool i8 i16 i32 i64 i128 u8 u16 u32 u64 u128 f32 f64 char str string
bytes byte_buf option unit unit_struct newtype_struct seq tuple
tuple_struct map struct enum identifier ignored_any
}
}
impl<'de> IntoDeserializer<'de, Error> for List {
type Deserializer = Self;
fn into_deserializer(self) -> Self::Deserializer {
self
}
}

View file

@ -0,0 +1,625 @@
use core::slice;
use std::marker::PhantomData;
use serde::ser::{Impossible, SerializeMap, SerializeSeq, SerializeStruct};
use serde::{Serialize, Serializer};
use super::{u8_vec_to_i8_vec, Error};
use crate::{Compound, List, Value};
impl Serialize for Value {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: serde::Serializer,
{
match self {
Value::Byte(v) => serializer.serialize_i8(*v),
Value::Short(v) => serializer.serialize_i16(*v),
Value::Int(v) => serializer.serialize_i32(*v),
Value::Long(v) => serializer.serialize_i64(*v),
Value::Float(v) => serializer.serialize_f32(*v),
Value::Double(v) => serializer.serialize_f64(*v),
Value::ByteArray(v) => {
// SAFETY: i8 has the same layout as u8.
let bytes = unsafe { slice::from_raw_parts(v.as_ptr() as *const u8, v.len()) };
serializer.serialize_bytes(bytes)
}
Value::String(v) => serializer.serialize_str(v),
Value::List(v) => v.serialize(serializer),
Value::Compound(v) => v.serialize(serializer),
Value::IntArray(v) => v.serialize(serializer),
Value::LongArray(v) => v.serialize(serializer),
}
}
}
impl Serialize for List {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: serde::Serializer,
{
match self {
List::End => serializer.serialize_seq(Some(0))?.end(),
List::Byte(v) => v.serialize(serializer),
List::Short(v) => v.serialize(serializer),
List::Int(v) => v.serialize(serializer),
List::Long(v) => v.serialize(serializer),
List::Float(v) => v.serialize(serializer),
List::Double(v) => v.serialize(serializer),
List::ByteArray(v) => v.serialize(serializer),
List::String(v) => v.serialize(serializer),
List::List(v) => v.serialize(serializer),
List::Compound(v) => v.serialize(serializer),
List::IntArray(v) => v.serialize(serializer),
List::LongArray(v) => v.serialize(serializer),
}
}
}
macro_rules! unsupported {
($lit:literal) => {
Err(Error::new(concat!("unsupported type: ", $lit)))
};
}
/// [`Serializer`] whose output is [`Compound`].
pub struct CompoundSerializer;
impl Serializer for CompoundSerializer {
type Ok = Compound;
type Error = Error;
type SerializeSeq = Impossible<Self::Ok, Self::Error>;
type SerializeTuple = Impossible<Self::Ok, Self::Error>;
type SerializeTupleStruct = Impossible<Self::Ok, Self::Error>;
type SerializeTupleVariant = Impossible<Self::Ok, Self::Error>;
type SerializeMap = GenericSerializeMap<Self::Ok>;
type SerializeStruct = GenericSerializeStruct<Self::Ok>;
type SerializeStructVariant = Impossible<Self::Ok, Self::Error>;
fn serialize_bool(self, _v: bool) -> Result<Self::Ok, Self::Error> {
unsupported!("bool")
}
fn serialize_i8(self, _v: i8) -> Result<Self::Ok, Self::Error> {
unsupported!("i8")
}
fn serialize_i16(self, _v: i16) -> Result<Self::Ok, Self::Error> {
unsupported!("i16")
}
fn serialize_i32(self, _v: i32) -> Result<Self::Ok, Self::Error> {
unsupported!("i32")
}
fn serialize_i64(self, _v: i64) -> Result<Self::Ok, Self::Error> {
unsupported!("i64")
}
fn serialize_u8(self, _v: u8) -> Result<Self::Ok, Self::Error> {
unsupported!("u8")
}
fn serialize_u16(self, _v: u16) -> Result<Self::Ok, Self::Error> {
unsupported!("u16")
}
fn serialize_u32(self, _v: u32) -> Result<Self::Ok, Self::Error> {
unsupported!("u32")
}
fn serialize_u64(self, _v: u64) -> Result<Self::Ok, Self::Error> {
unsupported!("u64")
}
fn serialize_f32(self, _v: f32) -> Result<Self::Ok, Self::Error> {
unsupported!("f32")
}
fn serialize_f64(self, _v: f64) -> Result<Self::Ok, Self::Error> {
unsupported!("f64")
}
fn serialize_char(self, _v: char) -> Result<Self::Ok, Self::Error> {
unsupported!("char")
}
fn serialize_str(self, _v: &str) -> Result<Self::Ok, Self::Error> {
unsupported!("str")
}
fn serialize_bytes(self, _v: &[u8]) -> Result<Self::Ok, Self::Error> {
unsupported!("bytes")
}
fn serialize_none(self) -> Result<Self::Ok, Self::Error> {
unsupported!("none")
}
fn serialize_some<T: ?Sized>(self, _value: &T) -> Result<Self::Ok, Self::Error>
where
T: Serialize,
{
unsupported!("some")
}
fn serialize_unit(self) -> Result<Self::Ok, Self::Error> {
unsupported!("unit")
}
fn serialize_unit_struct(self, _name: &'static str) -> Result<Self::Ok, Self::Error> {
unsupported!("unit struct")
}
fn serialize_unit_variant(
self,
_name: &'static str,
_variant_index: u32,
_variant: &'static str,
) -> Result<Self::Ok, Self::Error> {
unsupported!("unit variant")
}
fn serialize_newtype_struct<T: ?Sized>(
self,
_name: &'static str,
_value: &T,
) -> Result<Self::Ok, Self::Error>
where
T: Serialize,
{
unsupported!("newtype struct")
}
fn serialize_newtype_variant<T: ?Sized>(
self,
_name: &'static str,
_variant_index: u32,
_variant: &'static str,
_value: &T,
) -> Result<Self::Ok, Self::Error>
where
T: Serialize,
{
unsupported!("newtype variant")
}
fn serialize_seq(self, _len: Option<usize>) -> Result<Self::SerializeSeq, Self::Error> {
unsupported!("seq")
}
fn serialize_tuple(self, _len: usize) -> Result<Self::SerializeTuple, Self::Error> {
unsupported!("tuple")
}
fn serialize_tuple_struct(
self,
_name: &'static str,
_len: usize,
) -> Result<Self::SerializeTupleStruct, Self::Error> {
unsupported!("tuple struct")
}
fn serialize_tuple_variant(
self,
_name: &'static str,
_variant_index: u32,
_variant: &'static str,
_len: usize,
) -> Result<Self::SerializeTupleVariant, Self::Error> {
unsupported!("tuple variant")
}
fn serialize_map(self, len: Option<usize>) -> Result<Self::SerializeMap, Self::Error> {
Ok(GenericSerializeMap::new(len))
}
fn serialize_struct(
self,
_name: &'static str,
len: usize,
) -> Result<Self::SerializeStruct, Self::Error> {
Ok(GenericSerializeStruct::new(len))
}
fn serialize_struct_variant(
self,
_name: &'static str,
_variant_index: u32,
_variant: &'static str,
_len: usize,
) -> Result<Self::SerializeStructVariant, Self::Error> {
unsupported!("struct variant")
}
}
/// [`Serializer`] whose output is [`Value`].
struct ValueSerializer;
impl Serializer for ValueSerializer {
type Ok = Value;
type Error = Error;
type SerializeSeq = ValueSerializeSeq;
type SerializeTuple = Impossible<Self::Ok, Self::Error>;
type SerializeTupleStruct = Impossible<Self::Ok, Self::Error>;
type SerializeTupleVariant = Impossible<Self::Ok, Self::Error>;
type SerializeMap = GenericSerializeMap<Self::Ok>;
type SerializeStruct = GenericSerializeStruct<Self::Ok>;
type SerializeStructVariant = Impossible<Self::Ok, Self::Error>;
fn serialize_bool(self, v: bool) -> Result<Self::Ok, Self::Error> {
Ok(Value::Byte(v as _))
}
fn serialize_i8(self, v: i8) -> Result<Self::Ok, Self::Error> {
Ok(Value::Byte(v))
}
fn serialize_i16(self, v: i16) -> Result<Self::Ok, Self::Error> {
Ok(Value::Short(v))
}
fn serialize_i32(self, v: i32) -> Result<Self::Ok, Self::Error> {
Ok(Value::Int(v))
}
fn serialize_i64(self, v: i64) -> Result<Self::Ok, Self::Error> {
Ok(Value::Long(v))
}
fn serialize_u8(self, v: u8) -> Result<Self::Ok, Self::Error> {
Ok(Value::Byte(v as _))
}
fn serialize_u16(self, v: u16) -> Result<Self::Ok, Self::Error> {
Ok(Value::Short(v as _))
}
fn serialize_u32(self, v: u32) -> Result<Self::Ok, Self::Error> {
Ok(Value::Int(v as _))
}
fn serialize_u64(self, v: u64) -> Result<Self::Ok, Self::Error> {
Ok(Value::Long(v as _))
}
fn serialize_f32(self, v: f32) -> Result<Self::Ok, Self::Error> {
Ok(Value::Float(v))
}
fn serialize_f64(self, v: f64) -> Result<Self::Ok, Self::Error> {
Ok(Value::Double(v))
}
fn serialize_char(self, v: char) -> Result<Self::Ok, Self::Error> {
Ok(Value::String(v.into()))
}
fn serialize_str(self, v: &str) -> Result<Self::Ok, Self::Error> {
Ok(Value::String(v.into()))
}
fn serialize_bytes(self, v: &[u8]) -> Result<Self::Ok, Self::Error> {
Ok(Value::ByteArray(u8_vec_to_i8_vec(v.into())))
}
fn serialize_none(self) -> Result<Self::Ok, Self::Error> {
unsupported!("none")
}
fn serialize_some<T: ?Sized>(self, _value: &T) -> Result<Self::Ok, Self::Error>
where
T: Serialize,
{
unsupported!("some")
}
fn serialize_unit(self) -> Result<Self::Ok, Self::Error> {
unsupported!("unit")
}
fn serialize_unit_struct(self, _name: &'static str) -> Result<Self::Ok, Self::Error> {
self.serialize_unit()
}
fn serialize_unit_variant(
self,
_name: &'static str,
_variant_index: u32,
_variant: &'static str,
) -> Result<Self::Ok, Self::Error> {
unsupported!("unit variant")
}
fn serialize_newtype_struct<T: ?Sized>(
self,
_name: &'static str,
value: &T,
) -> Result<Self::Ok, Self::Error>
where
T: Serialize,
{
value.serialize(self)
}
fn serialize_newtype_variant<T: ?Sized>(
self,
_name: &'static str,
_variant_index: u32,
_variant: &'static str,
_value: &T,
) -> Result<Self::Ok, Self::Error>
where
T: Serialize,
{
unsupported!("newtype variant")
}
fn serialize_seq(self, len: Option<usize>) -> Result<Self::SerializeSeq, Self::Error> {
Ok(ValueSerializeSeq::End {
len: len.unwrap_or(0),
})
}
fn serialize_tuple(self, _len: usize) -> Result<Self::SerializeTuple, Self::Error> {
unsupported!("tuple")
}
fn serialize_tuple_struct(
self,
_name: &'static str,
_len: usize,
) -> Result<Self::SerializeTupleStruct, Self::Error> {
unsupported!("tuple struct")
}
fn serialize_tuple_variant(
self,
_name: &'static str,
_variant_index: u32,
_variant: &'static str,
_len: usize,
) -> Result<Self::SerializeTupleVariant, Self::Error> {
unsupported!("tuple variant")
}
fn serialize_map(self, len: Option<usize>) -> Result<Self::SerializeMap, Self::Error> {
Ok(GenericSerializeMap::new(len))
}
fn serialize_struct(
self,
_name: &'static str,
len: usize,
) -> Result<Self::SerializeStruct, Self::Error> {
Ok(GenericSerializeStruct::new(len))
}
fn serialize_struct_variant(
self,
_name: &'static str,
_variant_index: u32,
_variant: &'static str,
_len: usize,
) -> Result<Self::SerializeStructVariant, Self::Error> {
unsupported!("struct variant")
}
}
enum ValueSerializeSeq {
End { len: usize },
Byte(Vec<i8>),
Short(Vec<i16>),
Int(Vec<i32>),
Long(Vec<i64>),
Float(Vec<f32>),
Double(Vec<f64>),
ByteArray(Vec<Vec<i8>>),
String(Vec<String>),
List(Vec<List>),
Compound(Vec<Compound>),
IntArray(Vec<Vec<i32>>),
LongArray(Vec<Vec<i64>>),
}
impl SerializeSeq for ValueSerializeSeq {
type Ok = Value;
type Error = Error;
fn serialize_element<T: ?Sized>(&mut self, value: &T) -> Result<(), Self::Error>
where
T: Serialize,
{
macro_rules! serialize_variant {
($variant:ident, $vec:ident, $elem:ident) => {{
match $elem.serialize(ValueSerializer)? {
Value::$variant(val) => {
$vec.push(val);
Ok(())
}
_ => Err(Error::new(concat!(
"heterogeneous NBT list (expected `",
stringify!($variant),
"` element)"
))),
}
}};
}
match self {
Self::End { len } => {
fn vec<T>(elem: T, len: usize) -> Vec<T> {
let mut vec = Vec::with_capacity(len);
vec.push(elem);
vec
}
// Set the first element of the list.
*self = match value.serialize(ValueSerializer)? {
Value::Byte(v) => Self::Byte(vec(v, *len)),
Value::Short(v) => Self::Short(vec(v, *len)),
Value::Int(v) => Self::Int(vec(v, *len)),
Value::Long(v) => Self::Long(vec(v, *len)),
Value::Float(v) => Self::Float(vec(v, *len)),
Value::Double(v) => Self::Double(vec(v, *len)),
Value::ByteArray(v) => Self::ByteArray(vec(v, *len)),
Value::String(v) => Self::String(vec(v, *len)),
Value::List(v) => Self::List(vec(v, *len)),
Value::Compound(v) => Self::Compound(vec(v, *len)),
Value::IntArray(v) => Self::IntArray(vec(v, *len)),
Value::LongArray(v) => Self::LongArray(vec(v, *len)),
};
Ok(())
}
Self::Byte(v) => serialize_variant!(Byte, v, value),
Self::Short(v) => serialize_variant!(Short, v, value),
Self::Int(v) => serialize_variant!(Int, v, value),
Self::Long(v) => serialize_variant!(Long, v, value),
Self::Float(v) => serialize_variant!(Float, v, value),
Self::Double(v) => serialize_variant!(Double, v, value),
Self::ByteArray(v) => serialize_variant!(ByteArray, v, value),
Self::String(v) => serialize_variant!(String, v, value),
Self::List(v) => serialize_variant!(List, v, value),
Self::Compound(v) => serialize_variant!(Compound, v, value),
Self::IntArray(v) => serialize_variant!(IntArray, v, value),
Self::LongArray(v) => serialize_variant!(LongArray, v, value),
}
}
fn end(self) -> Result<Self::Ok, Self::Error> {
Ok(match self {
Self::End { .. } => List::End.into(),
Self::Byte(v) => v.into(),
Self::Short(v) => List::Short(v).into(),
Self::Int(v) => v.into(),
Self::Long(v) => List::Long(v).into(),
Self::Float(v) => List::Float(v).into(),
Self::Double(v) => List::Double(v).into(),
Self::ByteArray(v) => List::ByteArray(v).into(),
Self::String(v) => List::String(v).into(),
Self::List(v) => List::List(v).into(),
Self::Compound(v) => List::Compound(v).into(),
Self::IntArray(v) => List::IntArray(v).into(),
Self::LongArray(v) => List::LongArray(v).into(),
})
}
}
#[doc(hidden)]
pub struct GenericSerializeMap<Ok> {
/// Temp storage for `serialize_key`.
key: Option<String>,
res: Compound,
_marker: PhantomData<Ok>,
}
impl<Ok> GenericSerializeMap<Ok> {
pub fn new(len: Option<usize>) -> Self {
Self {
key: None,
res: Compound::with_capacity(len.unwrap_or(0)),
_marker: PhantomData,
}
}
}
impl<Ok> SerializeMap for GenericSerializeMap<Ok>
where
Compound: Into<Ok>,
{
type Ok = Ok;
type Error = Error;
fn serialize_key<T: ?Sized>(&mut self, key: &T) -> Result<(), Self::Error>
where
T: Serialize,
{
debug_assert!(
self.key.is_none(),
"call to `serialize_key` must be followed by `serialize_value`"
);
match key.serialize(ValueSerializer)? {
Value::String(s) => {
self.key = Some(s);
Ok(())
}
_ => Err(Error::new("invalid map key type (expected string)")),
}
}
fn serialize_value<T: ?Sized>(&mut self, value: &T) -> Result<(), Self::Error>
where
T: Serialize,
{
let key = self
.key
.take()
.expect("missing previous call to `serialize_key`");
self.res.insert(key, value.serialize(ValueSerializer)?);
Ok(())
}
fn end(self) -> Result<Self::Ok, Self::Error> {
Ok(self.res.into())
}
}
#[doc(hidden)]
pub struct GenericSerializeStruct<Ok> {
c: Compound,
_marker: PhantomData<Ok>,
}
impl<Ok> GenericSerializeStruct<Ok> {
fn new(len: usize) -> Self {
Self {
c: Compound::with_capacity(len),
_marker: PhantomData,
}
}
}
impl<Ok> SerializeStruct for GenericSerializeStruct<Ok>
where
Compound: Into<Ok>,
{
type Ok = Ok;
type Error = Error;
fn serialize_field<T: ?Sized>(
&mut self,
key: &'static str,
value: &T,
) -> Result<(), Self::Error>
where
T: Serialize,
{
self.c.insert(key, value.serialize(ValueSerializer)?);
Ok(())
}
fn end(self) -> Result<Self::Ok, Self::Error> {
Ok(self.c.into())
}
}

View file

@ -113,7 +113,7 @@ impl RegistryCodec {
impl Default for RegistryCodec {
fn default() -> Self {
let codec = include_bytes!("../../../extracted/registry_codec_1.19.4.dat");
let compound = valence_nbt::from_binary_slice(&mut codec.as_slice())
let compound = Compound::from_binary(&mut codec.as_slice())
.expect("failed to decode vanilla registry codec")
.0;