use std::collections::HashSet; use std::net::SocketAddr; use std::sync::atomic::{AtomicUsize, Ordering}; use log::LevelFilter; use noise::{NoiseFn, Seedable, SuperSimplex}; use rayon::iter::ParallelIterator; use valence::block::{BlockState, PropName, PropValue}; use valence::client::GameMode; use valence::config::{Config, ServerListPing}; use valence::text::Color; use valence::util::chunks_in_view_distance; use valence::{ async_trait, ChunkPos, DimensionId, Server, SharedServer, ShutdownResult, TextFormat, }; use vek::Lerp; pub fn main() -> ShutdownResult { env_logger::Builder::new() .filter_module("valence", LevelFilter::Trace) .parse_default_env() .init(); let seed = rand::random(); valence::start_server(Game { player_count: AtomicUsize::new(0), density_noise: SuperSimplex::new().set_seed(seed), hilly_noise: SuperSimplex::new().set_seed(seed.wrapping_add(1)), stone_noise: SuperSimplex::new().set_seed(seed.wrapping_add(2)), gravel_noise: SuperSimplex::new().set_seed(seed.wrapping_add(3)), grass_noise: SuperSimplex::new().set_seed(seed.wrapping_add(4)), }) } struct Game { player_count: AtomicUsize, density_noise: SuperSimplex, hilly_noise: SuperSimplex, stone_noise: SuperSimplex, gravel_noise: SuperSimplex, grass_noise: SuperSimplex, } const MAX_PLAYERS: usize = 10; #[async_trait] impl Config for Game { fn max_connections(&self) -> usize { // We want status pings to be successful even if the server is full. MAX_PLAYERS + 64 } fn online_mode(&self) -> bool { // You'll want this to be true on real servers. false } async fn server_list_ping( &self, _server: &SharedServer, _remote_addr: SocketAddr, ) -> ServerListPing { ServerListPing::Respond { online_players: self.player_count.load(Ordering::SeqCst) as i32, max_players: MAX_PLAYERS as i32, description: "Hello Valence!".color(Color::AQUA), favicon_png: Some(include_bytes!("favicon.png")), } } fn init(&self, server: &mut Server) { let (_, world) = server.worlds.create(DimensionId::default()); world.meta.set_flat(true); } fn update(&self, server: &mut Server) { let (world_id, world) = server.worlds.iter_mut().next().unwrap(); let mut chunks_to_unload = HashSet::<_>::from_iter(world.chunks.iter().map(|t| t.0)); server.clients.retain(|_, client| { if client.is_disconnected() { self.player_count.fetch_sub(1, Ordering::SeqCst); return false; } if client.created_tick() == server.shared.current_tick() { if self .player_count .fetch_update(Ordering::SeqCst, Ordering::SeqCst, |count| { (count < MAX_PLAYERS).then_some(count + 1) }) .is_err() { client.disconnect("The server is full!".color(Color::RED)); return false; } client.spawn(world_id); client.set_game_mode(GameMode::Creative); client.set_max_view_distance(32); client.teleport([0.0, 200.0, 0.0], 0.0, 0.0); world.meta.player_list_mut().insert( client.uuid(), client.username().to_string(), client.textures().cloned(), client.game_mode(), 0, None, ); client.send_message("Welcome to the terrain example!".italic()); client.send_message( "This demonstrates how to create infinite procedurally generated terrain." .italic(), ); } let dist = client.view_distance(); let p = client.position(); for pos in chunks_in_view_distance(ChunkPos::at(p.x, p.z), dist) { chunks_to_unload.remove(&pos); if world.chunks.get(pos).is_none() { world.chunks.create(pos); } } true }); for pos in chunks_to_unload { world.chunks.delete(pos); } world.chunks.par_iter_mut().for_each(|(pos, chunk)| { if chunk.created_tick() != server.shared.current_tick() { return; } for z in 0..16 { for x in 0..16 { let block_x = x as i64 + pos.x as i64 * 16; let block_z = z as i64 + pos.z as i64 * 16; let mut in_terrain = false; let mut depth = 0; for y in (0..chunk.height()).rev() { let b = terrain_column( self, block_x, y as i64, block_z, &mut in_terrain, &mut depth, ); chunk.set_block_state(x, y, z, b); } // Add grass for y in (0..chunk.height()).rev() { if chunk.get_block_state(x, y, z).is_air() && chunk.get_block_state(x, y - 1, z) == BlockState::GRASS_BLOCK { let density = fbm( &self.grass_noise, [block_x, y as i64, block_z].map(|a| a as f64 / 5.0), 4, 2.0, 0.7, ); if density > 0.55 { if density > 0.7 && chunk.get_block_state(x, y + 1, z).is_air() { let upper = BlockState::TALL_GRASS .set(PropName::Half, PropValue::Upper); let lower = BlockState::TALL_GRASS .set(PropName::Half, PropValue::Lower); chunk.set_block_state(x, y + 1, z, upper); chunk.set_block_state(x, y, z, lower); } else { chunk.set_block_state(x, y, z, BlockState::GRASS); } } } } } } }); } } fn terrain_column( g: &Game, x: i64, y: i64, z: i64, in_terrain: &mut bool, depth: &mut u32, ) -> BlockState { const WATER_HEIGHT: i64 = 55; if has_terrain_at(g, x, y, z) { let gravel_height = WATER_HEIGHT - 1 - (fbm( &g.gravel_noise, [x, y, z].map(|a| a as f64 / 10.0), 3, 2.0, 0.5, ) * 6.0) .floor() as i64; if *in_terrain { if *depth > 0 { *depth -= 1; if y < gravel_height { BlockState::GRAVEL } else { BlockState::DIRT } } else { BlockState::STONE } } else { *in_terrain = true; let n = noise01(&g.stone_noise, [x, y, z].map(|a| a as f64 / 15.0)); *depth = (n * 5.0).round() as u32; if y < gravel_height { BlockState::GRAVEL } else if y < WATER_HEIGHT - 1 { BlockState::DIRT } else { BlockState::GRASS_BLOCK } } } else { *in_terrain = false; *depth = 0; if y < WATER_HEIGHT { BlockState::WATER } else { BlockState::AIR } } } fn has_terrain_at(g: &Game, x: i64, y: i64, z: i64) -> bool { let hilly = Lerp::lerp_unclamped( 0.1, 1.0, noise01(&g.hilly_noise, [x, y, z].map(|a| a as f64 / 400.0)).powi(2), ); let lower = 15.0 + 100.0 * hilly; let upper = lower + 100.0 * hilly; if y as f64 <= lower { return true; } else if y as f64 >= upper { return false; } let density = 1.0 - lerpstep(lower, upper, y as f64); let n = fbm( &g.density_noise, [x, y, z].map(|a| a as f64 / 100.0), 4, 2.0, 0.5, ); n < density } fn lerpstep(edge0: f64, edge1: f64, x: f64) -> f64 { if x <= edge0 { 0.0 } else if x >= edge1 { 1.0 } else { (x - edge0) / (edge1 - edge0) } } fn fbm(noise: &SuperSimplex, p: [f64; 3], octaves: u32, lacunarity: f64, persistence: f64) -> f64 { let mut freq = 1.0; let mut amp = 1.0; let mut amp_sum = 0.0; let mut sum = 0.0; for _ in 0..octaves { let n = noise01(noise, p.map(|a| a * freq)); sum += n * amp; amp_sum += amp; freq *= lacunarity; amp *= persistence; } // Scale the output to [0, 1] sum / amp_sum } fn noise01(noise: &SuperSimplex, xyz: [f64; 3]) -> f64 { (noise.get(xyz) + 1.0) / 2.0 }