valence/examples/terrain.rs
2022-07-03 18:45:11 -07:00

315 lines
9.3 KiB
Rust

use std::collections::HashSet;
use std::net::SocketAddr;
use std::sync::atomic::{AtomicUsize, Ordering};
use log::LevelFilter;
use noise::{NoiseFn, Seedable, SuperSimplex};
use rayon::iter::ParallelIterator;
use valence::block::{BlockState, PropName, PropValue};
use valence::client::GameMode;
use valence::config::{Config, ServerListPing};
use valence::text::Color;
use valence::util::chunks_in_view_distance;
use valence::{
async_trait, ChunkPos, DimensionId, Server, SharedServer, ShutdownResult, TextFormat,
};
use vek::Lerp;
pub fn main() -> ShutdownResult {
env_logger::Builder::new()
.filter_module("valence", LevelFilter::Trace)
.parse_default_env()
.init();
let seed = rand::random();
valence::start_server(Game {
player_count: AtomicUsize::new(0),
density_noise: SuperSimplex::new().set_seed(seed),
hilly_noise: SuperSimplex::new().set_seed(seed.wrapping_add(1)),
stone_noise: SuperSimplex::new().set_seed(seed.wrapping_add(2)),
gravel_noise: SuperSimplex::new().set_seed(seed.wrapping_add(3)),
grass_noise: SuperSimplex::new().set_seed(seed.wrapping_add(4)),
})
}
struct Game {
player_count: AtomicUsize,
density_noise: SuperSimplex,
hilly_noise: SuperSimplex,
stone_noise: SuperSimplex,
gravel_noise: SuperSimplex,
grass_noise: SuperSimplex,
}
const MAX_PLAYERS: usize = 10;
#[async_trait]
impl Config for Game {
fn max_connections(&self) -> usize {
// We want status pings to be successful even if the server is full.
MAX_PLAYERS + 64
}
fn online_mode(&self) -> bool {
// You'll want this to be true on real servers.
false
}
async fn server_list_ping(
&self,
_server: &SharedServer,
_remote_addr: SocketAddr,
) -> ServerListPing {
ServerListPing::Respond {
online_players: self.player_count.load(Ordering::SeqCst) as i32,
max_players: MAX_PLAYERS as i32,
description: "Hello Valence!".color(Color::AQUA),
favicon_png: Some(include_bytes!("favicon.png")),
}
}
fn init(&self, server: &mut Server) {
let (_, world) = server.worlds.create(DimensionId::default());
world.meta.set_flat(true);
}
fn update(&self, server: &mut Server) {
let (world_id, world) = server.worlds.iter_mut().next().unwrap();
let mut chunks_to_unload = HashSet::<_>::from_iter(world.chunks.iter().map(|t| t.0));
server.clients.retain(|_, client| {
if client.is_disconnected() {
self.player_count.fetch_sub(1, Ordering::SeqCst);
return false;
}
if client.created_tick() == server.shared.current_tick() {
if self
.player_count
.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |count| {
(count < MAX_PLAYERS).then_some(count + 1)
})
.is_err()
{
client.disconnect("The server is full!".color(Color::RED));
return false;
}
client.spawn(world_id);
client.set_game_mode(GameMode::Creative);
client.set_max_view_distance(32);
client.teleport([0.0, 200.0, 0.0], 0.0, 0.0);
world.meta.player_list_mut().insert(
client.uuid(),
client.username().to_string(),
client.textures().cloned(),
client.game_mode(),
0,
None,
);
client.send_message("Welcome to the terrain example!".italic());
client.send_message(
"This demonstrates how to create infinite procedurally generated terrain."
.italic(),
);
}
let dist = client.view_distance();
let p = client.position();
for pos in chunks_in_view_distance(ChunkPos::at(p.x, p.z), dist) {
chunks_to_unload.remove(&pos);
if world.chunks.get(pos).is_none() {
world.chunks.create(pos);
}
}
true
});
for pos in chunks_to_unload {
world.chunks.delete(pos);
}
world.chunks.par_iter_mut().for_each(|(pos, chunk)| {
if chunk.created_tick() != server.shared.current_tick() {
return;
}
for z in 0..16 {
for x in 0..16 {
let block_x = x as i64 + pos.x as i64 * 16;
let block_z = z as i64 + pos.z as i64 * 16;
let mut in_terrain = false;
let mut depth = 0;
for y in (0..chunk.height()).rev() {
let b = terrain_column(
self,
block_x,
y as i64,
block_z,
&mut in_terrain,
&mut depth,
);
chunk.set_block_state(x, y, z, b);
}
// Add grass
for y in (0..chunk.height()).rev() {
if chunk.get_block_state(x, y, z).is_air()
&& chunk.get_block_state(x, y - 1, z) == BlockState::GRASS_BLOCK
{
let density = fbm(
&self.grass_noise,
[block_x, y as i64, block_z].map(|a| a as f64 / 5.0),
4,
2.0,
0.7,
);
if density > 0.55 {
if density > 0.7 && chunk.get_block_state(x, y + 1, z).is_air() {
let upper = BlockState::TALL_GRASS
.set(PropName::Half, PropValue::Upper);
let lower = BlockState::TALL_GRASS
.set(PropName::Half, PropValue::Lower);
chunk.set_block_state(x, y + 1, z, upper);
chunk.set_block_state(x, y, z, lower);
} else {
chunk.set_block_state(x, y, z, BlockState::GRASS);
}
}
}
}
}
}
});
}
}
fn terrain_column(
g: &Game,
x: i64,
y: i64,
z: i64,
in_terrain: &mut bool,
depth: &mut u32,
) -> BlockState {
const WATER_HEIGHT: i64 = 55;
if has_terrain_at(g, x, y, z) {
let gravel_height = WATER_HEIGHT
- 1
- (fbm(
&g.gravel_noise,
[x, y, z].map(|a| a as f64 / 10.0),
3,
2.0,
0.5,
) * 6.0)
.floor() as i64;
if *in_terrain {
if *depth > 0 {
*depth -= 1;
if y < gravel_height {
BlockState::GRAVEL
} else {
BlockState::DIRT
}
} else {
BlockState::STONE
}
} else {
*in_terrain = true;
let n = noise01(&g.stone_noise, [x, y, z].map(|a| a as f64 / 15.0));
*depth = (n * 5.0).round() as u32;
if y < gravel_height {
BlockState::GRAVEL
} else if y < WATER_HEIGHT - 1 {
BlockState::DIRT
} else {
BlockState::GRASS_BLOCK
}
}
} else {
*in_terrain = false;
*depth = 0;
if y < WATER_HEIGHT {
BlockState::WATER
} else {
BlockState::AIR
}
}
}
fn has_terrain_at(g: &Game, x: i64, y: i64, z: i64) -> bool {
let hilly = Lerp::lerp_unclamped(
0.1,
1.0,
noise01(&g.hilly_noise, [x, y, z].map(|a| a as f64 / 400.0)).powi(2),
);
let lower = 15.0 + 100.0 * hilly;
let upper = lower + 100.0 * hilly;
if y as f64 <= lower {
return true;
} else if y as f64 >= upper {
return false;
}
let density = 1.0 - lerpstep(lower, upper, y as f64);
let n = fbm(
&g.density_noise,
[x, y, z].map(|a| a as f64 / 100.0),
4,
2.0,
0.5,
);
n < density
}
fn lerpstep(edge0: f64, edge1: f64, x: f64) -> f64 {
if x <= edge0 {
0.0
} else if x >= edge1 {
1.0
} else {
(x - edge0) / (edge1 - edge0)
}
}
fn fbm(noise: &SuperSimplex, p: [f64; 3], octaves: u32, lacunarity: f64, persistence: f64) -> f64 {
let mut freq = 1.0;
let mut amp = 1.0;
let mut amp_sum = 0.0;
let mut sum = 0.0;
for _ in 0..octaves {
let n = noise01(noise, p.map(|a| a * freq));
sum += n * amp;
amp_sum += amp;
freq *= lacunarity;
amp *= persistence;
}
// Scale the output to [0, 1]
sum / amp_sum
}
fn noise01(noise: &SuperSimplex, xyz: [f64; 3]) -> f64 {
(noise.get(xyz) + 1.0) / 2.0
}