vello/piet-gpu/shader/backdrop.comp

116 lines
4.8 KiB
GLSL
Raw Normal View History

// SPDX-License-Identifier: Apache-2.0 OR MIT OR Unlicense
// Propagation of tile backdrop for filling.
//
// Each thread reads one path element and calculates the row and column counts of spanned tiles
// based on the bounding box.
// The row count then goes through a prefix sum to redistribute and load-balance the work across the workgroup.
// In the following step, the workgroup loops over the corresponding tile rows per element in parallel.
// For each row the per tile backdrop will be read, as calculated in the previous coarse path segment kernel,
// and propagated from the left to the right (prefix summed).
//
// Output state:
// - Each path element has an array of tiles covering the whole path based on boundig box
// - Each tile per path element contains the 'backdrop' and a list of subdivided path segments
#version 450
#extension GL_GOOGLE_include_directive : enable
#include "mem.h"
#include "setup.h"
#define LG_BACKDROP_WG (7 + LG_WG_FACTOR)
#define BACKDROP_WG (1 << LG_BACKDROP_WG)
2021-06-08 16:29:40 +09:00
#ifndef BACKDROP_DIST_FACTOR
// Some paths (those covering a large area) can generate a lot of backdrop tiles; BACKDROP_DIST_FACTOR defines how much
// additional threads should we spawn for parallel row processing. The additional threads does not participate in the
// earlier stages (calculating the tile counts) but does work in the final prefix sum stage which has a lot more
// parallelism.
2021-06-08 16:29:40 +09:00
// This feature is opt-in: one variant is compiled with the following default, while the other variant is compiled with
// a larger BACKDROP_DIST_FACTOR, which is used on GPUs supporting a larger workgroup size to improve performance.
#define BACKDROP_DIST_FACTOR 1
#endif
layout(local_size_x = BACKDROP_WG, local_size_y = BACKDROP_DIST_FACTOR) in;
layout(set = 0, binding = 1) readonly buffer ConfigBuf {
Config conf;
};
#include "tile.h"
shared uint sh_row_count[BACKDROP_WG];
shared Alloc sh_row_alloc[BACKDROP_WG];
shared uint sh_row_width[BACKDROP_WG];
void main() {
uint th_ix = gl_LocalInvocationIndex;
uint element_ix = gl_GlobalInvocationID.x;
// Work assignment: 1 thread : 1 path element
uint row_count = 0;
bool mem_ok = mem_error == NO_ERROR;
if (gl_LocalInvocationID.y == 0) {
if (element_ix < conf.n_elements) {
// Possible TODO: it's not necessary to process backdrops of stroked paths.
// We had logic for that but took it out because it used the Annotated struct.
PathRef path_ref = PathRef(conf.tile_alloc.offset + element_ix * Path_size);
Path path = Path_read(conf.tile_alloc, path_ref);
sh_row_width[th_ix] = path.bbox.z - path.bbox.x;
row_count = path.bbox.w - path.bbox.y;
// Paths that don't cross tile top edges don't have backdrops.
// Don't apply the optimization to paths that may cross the y = 0
// top edge, but clipped to 1 row.
if (row_count == 1 && path.bbox.y > 0) {
// Note: this can probably be expanded to width = 2 as
// long as it doesn't cross the left edge.
row_count = 0;
}
Alloc path_alloc = new_alloc(
path.tiles.offset, (path.bbox.z - path.bbox.x) * (path.bbox.w - path.bbox.y) * Tile_size, mem_ok);
sh_row_alloc[th_ix] = path_alloc;
}
sh_row_count[th_ix] = row_count;
}
// Prefix sum of sh_row_count
for (uint i = 0; i < LG_BACKDROP_WG; i++) {
barrier();
if (gl_LocalInvocationID.y == 0 && th_ix >= (1u << i)) {
row_count += sh_row_count[th_ix - (1u << i)];
}
barrier();
if (gl_LocalInvocationID.y == 0) {
sh_row_count[th_ix] = row_count;
}
}
barrier();
// Work assignment: 1 thread : 1 path element row
uint total_rows = sh_row_count[BACKDROP_WG - 1];
for (uint row = th_ix; row < total_rows; row += BACKDROP_WG * BACKDROP_DIST_FACTOR) {
// Binary search to find element
uint el_ix = 0;
for (uint i = 0; i < LG_BACKDROP_WG; i++) {
uint probe = el_ix + (uint(BACKDROP_WG / 2) >> i);
if (row >= sh_row_count[probe - 1]) {
el_ix = probe;
}
}
uint width = sh_row_width[el_ix];
if (width > 0 && mem_ok) {
// Process one row sequentially
// Read backdrop value per tile and prefix sum it
Alloc tiles_alloc = sh_row_alloc[el_ix];
uint seq_ix = row - (el_ix > 0 ? sh_row_count[el_ix - 1] : 0);
uint tile_el_ix = (tiles_alloc.offset >> 2) + 1 + seq_ix * 2 * width;
uint sum = read_mem(tiles_alloc, tile_el_ix);
for (uint x = 1; x < width; x++) {
tile_el_ix += 2;
sum += read_mem(tiles_alloc, tile_el_ix);
write_mem(tiles_alloc, tile_el_ix, sum);
}
}
}
}