vello/src/encoding/path.rs

386 lines
12 KiB
Rust
Raw Normal View History

// Copyright 2022 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Also licensed under MIT license, at your choice.
use bytemuck::{Pod, Zeroable};
use peniko::kurbo::Shape;
use super::Monoid;
/// Path segment.
#[derive(Clone, Copy, Debug, Zeroable, Pod)]
#[repr(C)]
pub struct PathSegment {
pub origin: [f32; 2],
pub delta: [f32; 2],
pub y_edge: f32,
pub next: u32,
}
/// Path segment type.
///
/// The values of the segment types are equivalent to the number of associated
/// points for each segment in the path data stream.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Pod, Zeroable)]
#[repr(C)]
pub struct PathSegmentType(pub u8);
impl PathSegmentType {
/// Line segment.
pub const LINE_TO: Self = Self(0x1);
/// Quadratic segment.
pub const QUAD_TO: Self = Self(0x2);
/// Cubic segment.
pub const CUBIC_TO: Self = Self(0x3);
}
/// Path tag representation.
#[derive(Copy, Clone, PartialEq, Eq, Pod, Zeroable)]
#[repr(C)]
pub struct PathTag(pub u8);
impl PathTag {
/// 32-bit floating point line segment.
///
/// This is equivalent to (PathSegmentType::LINE_TO | PathTag::F32_BIT).
pub const LINE_TO_F32: Self = Self(0x9);
/// 32-bit floating point quadratic segment.
///
/// This is equivalent to (PathSegmentType::QUAD_TO | PathTag::F32_BIT).
pub const QUAD_TO_F32: Self = Self(0xa);
/// 32-bit floating point cubic segment.
///
/// This is equivalent to (PathSegmentType::CUBIC_TO | PathTag::F32_BIT).
pub const CUBIC_TO_F32: Self = Self(0xb);
/// 16-bit integral line segment.
pub const LINE_TO_I16: Self = Self(0x1);
/// 16-bit integral quadratic segment.
pub const QUAD_TO_I16: Self = Self(0x2);
/// 16-bit integral cubic segment.
pub const CUBIC_TO_I16: Self = Self(0x3);
/// Transform marker.
pub const TRANSFORM: Self = Self(0x20);
/// Path marker.
pub const PATH: Self = Self(0x10);
/// Line width setting.
pub const LINEWIDTH: Self = Self(0x40);
/// Bit for path segments that are represented as f32 values. If unset
/// they are represented as i16.
const F32_BIT: u8 = 0x8;
/// Bit that marks a segment that is the end of a subpath.
const SUBPATH_END_BIT: u8 = 0x4;
/// Mask for bottom 3 bits that contain the [PathSegmentType].
const SEGMENT_MASK: u8 = 0x3;
/// Returns true if the tag is a segment.
pub fn is_path_segment(self) -> bool {
self.path_segment_type().0 != 0
}
/// Returns true if this is a 32-bit floating point segment.
pub fn is_f32(self) -> bool {
self.0 & Self::F32_BIT != 0
}
/// Returns true if this segment ends a subpath.
pub fn is_subpath_end(self) -> bool {
self.0 & Self::SUBPATH_END_BIT != 0
}
/// Sets the subpath end bit.
pub fn set_subpath_end(&mut self) {
self.0 |= Self::SUBPATH_END_BIT;
}
/// Returns the segment type.
pub fn path_segment_type(self) -> PathSegmentType {
PathSegmentType(self.0 & Self::SEGMENT_MASK)
}
}
/// Monoid for the path tag stream.
#[derive(Copy, Clone, Pod, Zeroable, Default, Debug)]
#[repr(C)]
pub struct PathMonoid {
/// Index into transform stream.
pub trans_ix: u32,
/// Path segment index.
pub pathseg_ix: u32,
/// Offset into path segment stream.
pub pathseg_offset: u32,
/// Index into linewidth stream.
pub linewidth_ix: u32,
/// Index of containing path.
pub path_ix: u32,
}
impl Monoid for PathMonoid {
type SourceValue = u32;
/// Reduces a packed 32-bit word containing 4 tags.
fn new(tag_word: u32) -> Self {
let mut c = Self::default();
let point_count = tag_word & 0x3030303;
c.pathseg_ix = ((point_count * 7) & 0x4040404).count_ones();
c.trans_ix = (tag_word & (PathTag::TRANSFORM.0 as u32 * 0x1010101)).count_ones();
let n_points = point_count + ((tag_word >> 2) & 0x1010101);
let mut a = n_points + (n_points & (((tag_word >> 3) & 0x1010101) * 15));
a += a >> 8;
a += a >> 16;
c.pathseg_offset = a & 0xff;
c.path_ix = (tag_word & (PathTag::PATH.0 as u32 * 0x1010101)).count_ones();
c.linewidth_ix = (tag_word & (PathTag::LINEWIDTH.0 as u32 * 0x1010101)).count_ones();
return c;
}
/// Monoid combination.
fn combine(&self, other: &Self) -> Self {
Self {
trans_ix: self.trans_ix + other.trans_ix,
pathseg_ix: self.pathseg_ix + other.pathseg_ix,
pathseg_offset: self.pathseg_offset + other.pathseg_offset,
linewidth_ix: self.linewidth_ix + other.linewidth_ix,
path_ix: self.path_ix + other.path_ix,
}
}
}
/// Path bounding box.
#[derive(Copy, Clone, Pod, Zeroable, Default, Debug)]
#[repr(C)]
pub struct PathBbox {
/// Minimum x value.
pub x0: i32,
/// Minimum y value.
pub y0: i32,
/// Maximum x value.
pub x1: i32,
/// Maximum y value.
pub y1: i32,
/// Line width.
pub linewidth: f32,
/// Index into the transform stream.
pub trans_ix: u32,
}
/// Encoder for path segments.
pub struct PathEncoder<'a> {
tags: &'a mut Vec<PathTag>,
data: &'a mut Vec<u8>,
n_segments: &'a mut u32,
n_paths: &'a mut u32,
first_point: [f32; 2],
state: PathState,
n_encoded_segments: u32,
is_fill: bool,
}
#[derive(PartialEq)]
enum PathState {
Start,
MoveTo,
NonemptySubpath,
}
impl<'a> PathEncoder<'a> {
/// Creates a new path encoder for the specified path tags and data. If `is_fill` is true,
/// ensures that all subpaths are closed.
pub fn new(
tags: &'a mut Vec<PathTag>,
data: &'a mut Vec<u8>,
n_segments: &'a mut u32,
n_paths: &'a mut u32,
is_fill: bool,
) -> Self {
Self {
tags,
data,
n_segments,
n_paths,
first_point: [0.0, 0.0],
state: PathState::Start,
n_encoded_segments: 0,
is_fill,
}
}
/// Encodes a move, starting a new subpath.
pub fn move_to(&mut self, x: f32, y: f32) {
if self.is_fill {
self.close();
}
let buf = [x, y];
let bytes = bytemuck::bytes_of(&buf);
self.first_point = buf;
if self.state == PathState::MoveTo {
let new_len = self.data.len() - 8;
self.data.truncate(new_len);
} else if self.state == PathState::NonemptySubpath {
if let Some(tag) = self.tags.last_mut() {
tag.set_subpath_end();
}
}
self.data.extend_from_slice(bytes);
self.state = PathState::MoveTo;
}
/// Encodes a line.
pub fn line_to(&mut self, x: f32, y: f32) {
if self.state == PathState::Start {
if self.n_encoded_segments == 0 {
// This copies the behavior of kurbo which treats an initial line, quad
// or curve as a move.
self.move_to(x, y);
return;
}
self.move_to(self.first_point[0], self.first_point[1]);
}
let buf = [x, y];
let bytes = bytemuck::bytes_of(&buf);
self.data.extend_from_slice(bytes);
self.tags.push(PathTag::LINE_TO_F32);
self.state = PathState::NonemptySubpath;
self.n_encoded_segments += 1;
}
/// Encodes a quadratic bezier.
pub fn quad_to(&mut self, x1: f32, y1: f32, x2: f32, y2: f32) {
if self.state == PathState::Start {
if self.n_encoded_segments == 0 {
self.move_to(x2, y2);
return;
}
self.move_to(self.first_point[0], self.first_point[1]);
}
let buf = [x1, y1, x2, y2];
let bytes = bytemuck::bytes_of(&buf);
self.data.extend_from_slice(bytes);
self.tags.push(PathTag::QUAD_TO_F32);
self.state = PathState::NonemptySubpath;
self.n_encoded_segments += 1;
}
/// Encodes a cubic bezier.
pub fn cubic_to(&mut self, x1: f32, y1: f32, x2: f32, y2: f32, x3: f32, y3: f32) {
if self.state == PathState::Start {
if self.n_encoded_segments == 0 {
self.move_to(x3, y3);
return;
}
self.move_to(self.first_point[0], self.first_point[1]);
}
let buf = [x1, y1, x2, y2, x3, y3];
let bytes = bytemuck::bytes_of(&buf);
self.data.extend_from_slice(bytes);
self.tags.push(PathTag::CUBIC_TO_F32);
self.state = PathState::NonemptySubpath;
self.n_encoded_segments += 1;
}
/// Closes the current subpath.
pub fn close(&mut self) {
match self.state {
PathState::Start => return,
PathState::MoveTo => {
let new_len = self.data.len() - 8;
self.data.truncate(new_len);
self.state = PathState::Start;
return;
}
PathState::NonemptySubpath => (),
}
let len = self.data.len();
if len < 8 {
// can't happen
return;
}
let first_bytes = bytemuck::bytes_of(&self.first_point);
if &self.data[len - 8..len] != first_bytes {
self.data.extend_from_slice(first_bytes);
let mut tag = PathTag::LINE_TO_F32;
tag.set_subpath_end();
self.tags.push(tag);
self.n_encoded_segments += 1;
} else {
if let Some(tag) = self.tags.last_mut() {
tag.set_subpath_end();
}
}
self.state = PathState::Start;
}
/// Encodes a shape.
pub fn shape(&mut self, shape: &impl Shape) {
use peniko::kurbo::PathEl;
for el in shape.path_elements(0.1) {
match el {
PathEl::MoveTo(p0) => self.move_to(p0.x as f32, p0.y as f32),
PathEl::LineTo(p0) => self.line_to(p0.x as f32, p0.y as f32),
PathEl::QuadTo(p0, p1) => {
self.quad_to(p0.x as f32, p0.y as f32, p1.x as f32, p1.y as f32)
}
PathEl::CurveTo(p0, p1, p2) => self.cubic_to(
p0.x as f32,
p0.y as f32,
p1.x as f32,
p1.y as f32,
p2.x as f32,
p2.y as f32,
),
PathEl::ClosePath => self.close(),
}
}
}
/// Completes path encoding and returns the actual number of encoded segments.
///
/// If `insert_path_marker` is true, encodes the [PathTag::PATH] tag to signify
/// the end of a complete path object. Setting this to false allows encoding
/// multiple paths with differing transforms for a single draw object.
pub fn finish(mut self, insert_path_marker: bool) -> u32 {
if self.is_fill {
self.close();
}
if self.state == PathState::MoveTo {
let new_len = self.data.len() - 8;
self.data.truncate(new_len);
}
if self.n_encoded_segments != 0 {
if let Some(tag) = self.tags.last_mut() {
tag.set_subpath_end();
}
*self.n_segments += self.n_encoded_segments;
if insert_path_marker {
self.tags.push(PathTag::PATH);
*self.n_paths += 1;
}
}
self.n_encoded_segments
}
}