2020-05-13 15:35:19 -07:00
|
|
|
// The coarse rasterizer stage of the pipeline.
|
|
|
|
|
|
|
|
#version 450
|
|
|
|
#extension GL_GOOGLE_include_directive : enable
|
|
|
|
|
|
|
|
#include "setup.h"
|
|
|
|
|
|
|
|
layout(local_size_x = N_TILE, local_size_y = 1) in;
|
|
|
|
|
|
|
|
layout(set = 0, binding = 0) buffer AnnotatedBuf {
|
|
|
|
uint[] annotated;
|
|
|
|
};
|
|
|
|
|
|
|
|
layout(set = 0, binding = 1) buffer BinsBuf {
|
|
|
|
uint[] bins;
|
|
|
|
};
|
|
|
|
|
2020-06-03 09:28:43 -07:00
|
|
|
layout(set = 0, binding = 2) buffer TileBuf {
|
|
|
|
uint[] tile;
|
|
|
|
};
|
|
|
|
|
|
|
|
layout(set = 0, binding = 3) buffer AllocBuf {
|
2020-05-30 08:35:26 -07:00
|
|
|
uint n_elements;
|
2020-05-13 15:35:19 -07:00
|
|
|
uint alloc;
|
|
|
|
};
|
|
|
|
|
2020-06-03 09:28:43 -07:00
|
|
|
layout(set = 0, binding = 4) buffer PtclBuf {
|
2020-05-13 15:35:19 -07:00
|
|
|
uint[] ptcl;
|
|
|
|
};
|
|
|
|
|
|
|
|
#include "annotated.h"
|
|
|
|
#include "bins.h"
|
2020-06-03 09:28:43 -07:00
|
|
|
#include "tile.h"
|
2020-05-13 15:35:19 -07:00
|
|
|
#include "ptcl.h"
|
|
|
|
|
2020-05-30 15:37:34 -07:00
|
|
|
#define LG_N_PART_READ 8
|
|
|
|
#define N_PART_READ (1 << LG_N_PART_READ)
|
|
|
|
|
2020-05-30 21:12:55 -07:00
|
|
|
shared uint sh_elements[N_TILE];
|
|
|
|
shared float sh_right_edge[N_TILE];
|
2020-05-13 15:35:19 -07:00
|
|
|
|
2020-05-30 15:37:34 -07:00
|
|
|
// Number of elements in the partition; prefix sum.
|
|
|
|
shared uint sh_part_count[N_PART_READ];
|
|
|
|
shared uint sh_part_elements[N_PART_READ];
|
|
|
|
|
2020-05-13 15:35:19 -07:00
|
|
|
shared uint sh_bitmaps[N_SLICE][N_TILE];
|
2020-05-22 14:18:39 -07:00
|
|
|
|
2020-06-03 17:55:42 -07:00
|
|
|
shared uint sh_tile_count[N_TILE];
|
|
|
|
// The width of the tile rect for the element, intersected with this bin
|
|
|
|
shared uint sh_tile_width[N_TILE];
|
|
|
|
shared uint sh_tile_x0[N_TILE];
|
|
|
|
shared uint sh_tile_y0[N_TILE];
|
2020-05-13 15:35:19 -07:00
|
|
|
|
2020-06-04 10:39:08 -07:00
|
|
|
// These are set up so base + tile_y * stride + tile_x points to a Tile.
|
|
|
|
shared uint sh_tile_base[N_TILE];
|
|
|
|
shared uint sh_tile_stride[N_TILE];
|
|
|
|
|
2020-05-14 17:06:45 -07:00
|
|
|
// scale factors useful for converting coordinates to tiles
|
|
|
|
#define SX (1.0 / float(TILE_WIDTH_PX))
|
|
|
|
#define SY (1.0 / float(TILE_HEIGHT_PX))
|
|
|
|
|
2020-05-15 12:28:29 -07:00
|
|
|
// Perhaps cmd_limit should be a global? This is a style question.
|
|
|
|
void alloc_cmd(inout CmdRef cmd_ref, inout uint cmd_limit) {
|
|
|
|
if (cmd_ref.offset > cmd_limit) {
|
|
|
|
uint new_cmd = atomicAdd(alloc, PTCL_INITIAL_ALLOC);
|
|
|
|
CmdJump jump = CmdJump(new_cmd);
|
|
|
|
Cmd_Jump_write(cmd_ref, jump);
|
|
|
|
cmd_ref = CmdRef(new_cmd);
|
|
|
|
cmd_limit = new_cmd + PTCL_INITIAL_ALLOC - 2 * Cmd_size;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2020-05-13 15:35:19 -07:00
|
|
|
void main() {
|
|
|
|
// Could use either linear or 2d layouts for both dispatch and
|
|
|
|
// invocations within the workgroup. We'll use variables to abstract.
|
|
|
|
uint bin_ix = N_TILE_X * gl_WorkGroupID.y + gl_WorkGroupID.x;
|
2020-05-30 08:35:26 -07:00
|
|
|
uint partition_ix = 0;
|
2020-05-30 15:37:34 -07:00
|
|
|
uint n_partitions = (n_elements + N_TILE - 1) / N_TILE;
|
2020-05-14 17:06:45 -07:00
|
|
|
// Top left coordinates of this bin.
|
|
|
|
vec2 xy0 = vec2(N_TILE_X * TILE_WIDTH_PX * gl_WorkGroupID.x, N_TILE_Y * TILE_HEIGHT_PX * gl_WorkGroupID.y);
|
2020-05-13 15:35:19 -07:00
|
|
|
uint th_ix = gl_LocalInvocationID.x;
|
2020-05-15 12:28:29 -07:00
|
|
|
|
2020-06-04 10:39:08 -07:00
|
|
|
// Coordinates of top left of bin, in tiles.
|
|
|
|
uint bin_tile_x = N_TILE_X * gl_WorkGroupID.x;
|
|
|
|
uint bin_tile_y = N_TILE_Y * gl_WorkGroupID.y;
|
|
|
|
uint tile_x = gl_LocalInvocationID.x % N_TILE_X;
|
|
|
|
uint tile_y = gl_LocalInvocationID.x / N_TILE_X;
|
|
|
|
uint this_tile_ix = (bin_tile_y + tile_y) * WIDTH_IN_TILES + bin_tile_x + tile_x;
|
2020-05-30 08:35:26 -07:00
|
|
|
CmdRef cmd_ref = CmdRef(this_tile_ix * PTCL_INITIAL_ALLOC);
|
2020-05-15 12:28:29 -07:00
|
|
|
uint cmd_limit = cmd_ref.offset + PTCL_INITIAL_ALLOC - 2 * Cmd_size;
|
|
|
|
|
2020-05-30 15:37:34 -07:00
|
|
|
// I'm sure we can figure out how to do this with at least one fewer register...
|
|
|
|
// Items up to rd_ix have been read from sh_elements
|
2020-05-13 15:35:19 -07:00
|
|
|
uint rd_ix = 0;
|
2020-05-30 15:37:34 -07:00
|
|
|
// Items up to wr_ix have been written into sh_elements
|
|
|
|
uint wr_ix = 0;
|
|
|
|
// Items between part_start_ix and ready_ix are ready to be transferred from sh_part_elements
|
|
|
|
uint part_start_ix = 0;
|
|
|
|
uint ready_ix = 0;
|
2020-05-20 11:48:05 -07:00
|
|
|
int backdrop = 0;
|
2020-05-15 20:57:07 -07:00
|
|
|
while (true) {
|
2020-05-13 15:35:19 -07:00
|
|
|
for (uint i = 0; i < N_SLICE; i++) {
|
|
|
|
sh_bitmaps[i][th_ix] = 0;
|
|
|
|
}
|
|
|
|
|
2020-05-30 15:37:34 -07:00
|
|
|
// parallel read of input partitions
|
|
|
|
do {
|
|
|
|
if (ready_ix == wr_ix && partition_ix < n_partitions) {
|
|
|
|
part_start_ix = ready_ix;
|
|
|
|
uint count = 0;
|
|
|
|
if (th_ix < N_PART_READ && partition_ix + th_ix < n_partitions) {
|
|
|
|
uint in_ix = ((partition_ix + th_ix) * N_TILE + bin_ix) * 2;
|
|
|
|
count = bins[in_ix];
|
|
|
|
sh_part_elements[th_ix] = bins[in_ix + 1];
|
|
|
|
}
|
|
|
|
// prefix sum of counts
|
|
|
|
for (uint i = 0; i < LG_N_PART_READ; i++) {
|
|
|
|
if (th_ix < N_PART_READ) {
|
|
|
|
sh_part_count[th_ix] = count;
|
|
|
|
}
|
|
|
|
barrier();
|
|
|
|
if (th_ix < N_PART_READ) {
|
|
|
|
if (th_ix >= (1 << i)) {
|
|
|
|
count += sh_part_count[th_ix - (1 << i)];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
barrier();
|
|
|
|
}
|
|
|
|
if (th_ix < N_PART_READ) {
|
|
|
|
sh_part_count[th_ix] = part_start_ix + count;
|
|
|
|
}
|
|
|
|
barrier();
|
|
|
|
ready_ix = sh_part_count[N_PART_READ - 1];
|
|
|
|
partition_ix += N_PART_READ;
|
|
|
|
}
|
|
|
|
// use binary search to find element to read
|
|
|
|
uint ix = rd_ix + th_ix;
|
|
|
|
if (ix >= wr_ix && ix < ready_ix) {
|
|
|
|
uint part_ix = 0;
|
|
|
|
for (uint i = 0; i < LG_N_PART_READ; i++) {
|
|
|
|
uint probe = part_ix + ((N_PART_READ / 2) >> i);
|
|
|
|
if (ix >= sh_part_count[probe - 1]) {
|
|
|
|
part_ix = probe;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
ix -= part_ix > 0 ? sh_part_count[part_ix - 1] : part_start_ix;
|
|
|
|
BinInstanceRef inst_ref = BinInstanceRef(sh_part_elements[part_ix]);
|
|
|
|
BinInstance inst = BinInstance_read(BinInstance_index(inst_ref, ix));
|
2020-05-30 21:12:55 -07:00
|
|
|
sh_elements[th_ix] = inst.element_ix;
|
|
|
|
sh_right_edge[th_ix] = inst.right_edge;
|
2020-05-13 15:35:19 -07:00
|
|
|
}
|
2020-05-30 15:37:34 -07:00
|
|
|
barrier();
|
|
|
|
|
|
|
|
wr_ix = min(rd_ix + N_TILE, ready_ix);
|
|
|
|
} while (wr_ix - rd_ix < N_TILE && (wr_ix < ready_ix || partition_ix < n_partitions));
|
|
|
|
|
2020-05-13 15:35:19 -07:00
|
|
|
// We've done the merge and filled the buffer.
|
2020-05-14 17:06:45 -07:00
|
|
|
|
|
|
|
// Read one element, compute coverage.
|
2020-05-13 15:35:19 -07:00
|
|
|
uint tag = Annotated_Nop;
|
2020-06-04 10:39:08 -07:00
|
|
|
uint element_ix;
|
2020-05-13 15:35:19 -07:00
|
|
|
AnnotatedRef ref;
|
2020-05-20 11:48:05 -07:00
|
|
|
float right_edge = 0.0;
|
2020-05-13 15:35:19 -07:00
|
|
|
if (th_ix + rd_ix < wr_ix) {
|
2020-06-04 10:39:08 -07:00
|
|
|
element_ix = sh_elements[th_ix];
|
2020-05-30 21:12:55 -07:00
|
|
|
right_edge = sh_right_edge[th_ix];
|
2020-05-13 15:35:19 -07:00
|
|
|
ref = AnnotatedRef(element_ix * Annotated_size);
|
|
|
|
tag = Annotated_tag(ref);
|
|
|
|
}
|
2020-05-14 17:06:45 -07:00
|
|
|
|
2020-05-19 08:20:45 -07:00
|
|
|
// Bounding box of element in pixel coordinates.
|
2020-06-04 10:39:08 -07:00
|
|
|
uint tile_count;
|
2020-05-14 17:06:45 -07:00
|
|
|
switch (tag) {
|
|
|
|
case Annotated_Fill:
|
|
|
|
case Annotated_Stroke:
|
2020-06-04 10:39:08 -07:00
|
|
|
// Because the only elements we're processing right now are
|
|
|
|
// paths, we can just use the element index as the path index.
|
|
|
|
// In future, when we're doing a bunch of stuff, the path index
|
|
|
|
// should probably be stored in the annotated element.
|
|
|
|
uint path_ix = element_ix;
|
|
|
|
Path path = Path_read(PathRef(path_ix * Path_size));
|
|
|
|
uint stride = path.bbox.z - path.bbox.x;
|
|
|
|
sh_tile_stride[th_ix] = stride;
|
|
|
|
int dx = int(path.bbox.x) - int(bin_tile_x);
|
|
|
|
int dy = int(path.bbox.y) - int(bin_tile_y);
|
|
|
|
int x0 = clamp(dx, 0, N_TILE_X);
|
|
|
|
int y0 = clamp(dy, 0, N_TILE_Y);
|
|
|
|
int x1 = clamp(int(path.bbox.z) - int(bin_tile_x), 0, N_TILE_X);
|
|
|
|
int y1 = clamp(int(path.bbox.w) - int(bin_tile_y), 0, N_TILE_Y);
|
|
|
|
sh_tile_width[th_ix] = uint(x1 - x0);
|
|
|
|
sh_tile_x0[th_ix] = x0;
|
|
|
|
sh_tile_y0[th_ix] = y0;
|
|
|
|
tile_count = uint(x1 - x0) * uint(y1 - y0);
|
|
|
|
// base relative to bin
|
|
|
|
uint base = path.tiles.offset - uint(dy * stride + dx) * Tile_size;
|
|
|
|
sh_tile_base[th_ix] = base;
|
2020-05-19 08:20:45 -07:00
|
|
|
break;
|
|
|
|
default:
|
2020-06-04 10:39:08 -07:00
|
|
|
tile_count = 0;
|
2020-05-14 17:06:45 -07:00
|
|
|
break;
|
|
|
|
}
|
2020-05-19 08:20:45 -07:00
|
|
|
|
2020-06-03 17:55:42 -07:00
|
|
|
// Prefix sum of sh_tile_count
|
|
|
|
sh_tile_count[th_ix] = tile_count;
|
|
|
|
for (uint i = 0; i < LG_N_TILE; i++) {
|
|
|
|
barrier();
|
|
|
|
if (th_ix >= (1 << i)) {
|
|
|
|
tile_count += sh_tile_count[th_ix - (1 << i)];
|
|
|
|
}
|
|
|
|
barrier();
|
|
|
|
sh_tile_count[th_ix] = tile_count;
|
|
|
|
}
|
|
|
|
barrier();
|
|
|
|
uint total_tile_count = sh_tile_count[N_TILE - 1];
|
|
|
|
for (uint ix = th_ix; ix < total_tile_count; ix += N_TILE) {
|
|
|
|
// Binary search to find element
|
|
|
|
uint el_ix = 0;
|
|
|
|
for (uint i = 0; i < LG_N_TILE; i++) {
|
|
|
|
uint probe = el_ix + ((N_TILE / 2) >> i);
|
|
|
|
if (ix >= sh_tile_count[probe - 1]) {
|
|
|
|
el_ix = probe;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
uint seq_ix = ix - (el_ix > 0 ? sh_tile_count[el_ix - 1] : 0);
|
|
|
|
uint width = sh_tile_width[el_ix];
|
|
|
|
uint x = sh_tile_x0[el_ix] + seq_ix % width;
|
|
|
|
uint y = sh_tile_y0[el_ix] + seq_ix / width;
|
2020-06-04 10:39:08 -07:00
|
|
|
Tile tile = Tile_read(TileRef(sh_tile_base[el_ix] + (sh_tile_stride[el_ix] * y + x) * Tile_size));
|
2020-06-05 15:07:02 -07:00
|
|
|
if (tile.tile.offset != 0 || tile.backdrop != 0) {
|
2020-06-04 10:39:08 -07:00
|
|
|
uint el_slice = el_ix / 32;
|
|
|
|
uint el_mask = 1 << (el_ix & 31);
|
|
|
|
atomicOr(sh_bitmaps[el_slice][y * N_TILE_X + x], el_mask);
|
2020-05-14 17:06:45 -07:00
|
|
|
}
|
|
|
|
}
|
2020-06-03 17:55:42 -07:00
|
|
|
|
2020-05-15 12:28:29 -07:00
|
|
|
barrier();
|
2020-05-14 17:06:45 -07:00
|
|
|
|
2020-05-22 14:18:39 -07:00
|
|
|
// We've computed coverage and other info for each element in the input, now for
|
|
|
|
// the output stage. We'll do segments first using a more parallel algorithm.
|
|
|
|
|
2020-06-03 09:28:43 -07:00
|
|
|
/*
|
2020-05-22 14:18:39 -07:00
|
|
|
uint seg_count = 0;
|
|
|
|
for (uint i = 0; i < N_SLICE; i++) {
|
2020-05-25 09:08:21 -07:00
|
|
|
seg_count += bitCount(sh_bitmaps[i][th_ix] & sh_is_segment[i]);
|
2020-05-22 14:18:39 -07:00
|
|
|
}
|
|
|
|
sh_seg_count[th_ix] = seg_count;
|
|
|
|
// Prefix sum of sh_seg_count
|
|
|
|
for (uint i = 0; i < LG_N_TILE; i++) {
|
|
|
|
barrier();
|
|
|
|
if (th_ix >= (1 << i)) {
|
|
|
|
seg_count += sh_seg_count[th_ix - (1 << i)];
|
|
|
|
}
|
|
|
|
barrier();
|
|
|
|
sh_seg_count[th_ix] = seg_count;
|
|
|
|
}
|
|
|
|
if (th_ix == N_TILE - 1) {
|
2020-05-25 09:08:21 -07:00
|
|
|
sh_seg_alloc = atomicAdd(alloc, seg_count * Segment_size);
|
2020-05-22 14:18:39 -07:00
|
|
|
}
|
|
|
|
barrier();
|
|
|
|
uint total_seg_count = sh_seg_count[N_TILE - 1];
|
|
|
|
uint seg_alloc = sh_seg_alloc;
|
|
|
|
|
2020-05-25 09:08:21 -07:00
|
|
|
// Output buffer is allocated as segments for each tile laid end-to-end.
|
2020-05-22 14:18:39 -07:00
|
|
|
|
|
|
|
for (uint ix = th_ix; ix < total_seg_count; ix += N_TILE) {
|
|
|
|
// Find the work item; this thread is now not bound to an element or tile.
|
|
|
|
// First find the tile (by binary search)
|
|
|
|
uint tile_ix = 0;
|
|
|
|
for (uint i = 0; i < LG_N_TILE; i++) {
|
|
|
|
uint probe = tile_ix + ((N_TILE / 2) >> i);
|
|
|
|
if (ix >= sh_seg_count[probe - 1]) {
|
|
|
|
tile_ix = probe;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Now, sh_seg_count[tile_ix - 1] <= ix < sh_seg_count[tile_ix].
|
|
|
|
// (considering sh_seg_count[-1] == 0)
|
|
|
|
|
|
|
|
// Index of segment within tile's segments
|
|
|
|
uint seq_ix = ix;
|
|
|
|
// Maybe consider a sentinel value to avoid the conditional?
|
|
|
|
if (tile_ix > 0) {
|
|
|
|
seq_ix -= sh_seg_count[tile_ix - 1];
|
|
|
|
}
|
|
|
|
// Find the segment. This is done by linear scan through the bitmaps of the
|
|
|
|
// tile, accelerated by bit counting. Binary search might help, maybe not.
|
|
|
|
uint slice_ix = 0;
|
|
|
|
uint seq_bits;
|
2020-05-25 09:08:21 -07:00
|
|
|
|
2020-05-22 14:18:39 -07:00
|
|
|
while (true) {
|
2020-05-25 09:08:21 -07:00
|
|
|
seq_bits = sh_bitmaps[slice_ix][tile_ix] & sh_is_segment[slice_ix];
|
2020-05-22 14:18:39 -07:00
|
|
|
uint this_count = bitCount(seq_bits);
|
|
|
|
if (this_count > seq_ix) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
seq_ix -= this_count;
|
|
|
|
slice_ix++;
|
|
|
|
}
|
|
|
|
// Now find position of nth bit set (n = seq_ix) in seq_bits; binary search
|
|
|
|
uint bit_ix = 0;
|
|
|
|
for (int i = 0; i < 5; i++) {
|
|
|
|
uint probe = bit_ix + (16 >> i);
|
|
|
|
if (seq_ix >= bitCount(seq_bits & ((1 << probe) - 1))) {
|
|
|
|
bit_ix = probe;
|
|
|
|
}
|
|
|
|
}
|
2020-05-25 09:08:21 -07:00
|
|
|
uint out_offset = seg_alloc + Segment_size * ix + SegChunk_size;
|
2020-05-30 21:12:55 -07:00
|
|
|
uint rd_el_ix = slice_ix * 32 + bit_ix;
|
2020-05-25 09:08:21 -07:00
|
|
|
uint element_ix = sh_elements[rd_el_ix];
|
|
|
|
ref = AnnotatedRef(element_ix * Annotated_size);
|
2020-05-25 15:01:52 -07:00
|
|
|
AnnoFillLineSeg line = Annotated_FillLine_read(ref);
|
|
|
|
float y_edge = 0.0;
|
|
|
|
// This is basically the same logic as piet-metal, but should be made numerically robust.
|
|
|
|
if (Annotated_tag(ref) == Annotated_FillLine) {
|
|
|
|
vec2 tile_xy = xy0 + vec2((tile_ix % N_TILE_X) * TILE_WIDTH_PX, (tile_ix / N_TILE_X) * TILE_HEIGHT_PX);
|
|
|
|
y_edge = mix(line.p0.y, line.p1.y, (tile_xy.x - line.p0.x) / (line.p1.x - line.p0.x));
|
|
|
|
if (min(line.p0.x, line.p1.x) < tile_xy.x && y_edge >= tile_xy.y && y_edge < tile_xy.y + TILE_HEIGHT_PX) {
|
|
|
|
if (line.p0.x > line.p1.x) {
|
|
|
|
line.p1 = vec2(tile_xy.x, y_edge);
|
|
|
|
} else {
|
|
|
|
line.p0 = vec2(tile_xy.x, y_edge);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
y_edge = 1e9;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
Segment seg = Segment(line.p0, line.p1, y_edge);
|
2020-05-25 09:08:21 -07:00
|
|
|
Segment_write(SegmentRef(seg_alloc + Segment_size * ix), seg);
|
2020-05-22 14:18:39 -07:00
|
|
|
}
|
2020-06-03 09:28:43 -07:00
|
|
|
*/
|
2020-05-22 14:18:39 -07:00
|
|
|
|
|
|
|
// Output non-segment elements for this tile. The thread does a sequential walk
|
|
|
|
// through the non-segment elements, and for segments, count and backdrop are
|
|
|
|
// aggregated using bit counting.
|
2020-05-14 17:06:45 -07:00
|
|
|
uint slice_ix = 0;
|
|
|
|
uint bitmap = sh_bitmaps[0][th_ix];
|
|
|
|
while (true) {
|
2020-06-03 09:28:43 -07:00
|
|
|
if (bitmap == 0) {
|
2020-05-14 17:06:45 -07:00
|
|
|
slice_ix++;
|
|
|
|
if (slice_ix == N_SLICE) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
bitmap = sh_bitmaps[slice_ix][th_ix];
|
2020-06-03 09:28:43 -07:00
|
|
|
if (bitmap == 0) {
|
2020-05-14 17:06:45 -07:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
}
|
2020-06-03 09:28:43 -07:00
|
|
|
uint element_ref_ix = slice_ix * 32 + findLSB(bitmap);
|
2020-05-30 21:12:55 -07:00
|
|
|
uint element_ix = sh_elements[element_ref_ix];
|
2020-05-14 17:06:45 -07:00
|
|
|
|
2020-06-03 09:28:43 -07:00
|
|
|
// Clear LSB
|
|
|
|
bitmap &= bitmap - 1;
|
2020-05-20 11:48:05 -07:00
|
|
|
|
2020-05-14 17:06:45 -07:00
|
|
|
// At this point, we read the element again from global memory.
|
|
|
|
// If that turns out to be expensive, maybe we can pack it into
|
|
|
|
// shared memory (or perhaps just the tag).
|
2020-05-15 12:28:29 -07:00
|
|
|
ref = AnnotatedRef(element_ix * Annotated_size);
|
|
|
|
tag = Annotated_tag(ref);
|
|
|
|
|
|
|
|
switch (tag) {
|
|
|
|
case Annotated_Fill:
|
2020-06-05 15:07:02 -07:00
|
|
|
Tile tile = Tile_read(TileRef(sh_tile_base[element_ref_ix]
|
|
|
|
+ (sh_tile_stride[element_ref_ix] * tile_y + tile_x) * Tile_size));
|
|
|
|
AnnoFill fill = Annotated_Fill_read(ref);
|
|
|
|
alloc_cmd(cmd_ref, cmd_limit);
|
|
|
|
if (tile.tile.offset != 0) {
|
2020-05-20 07:38:52 -07:00
|
|
|
CmdFill cmd_fill;
|
2020-06-05 15:07:02 -07:00
|
|
|
cmd_fill.tile_ref = tile.tile.offset;
|
|
|
|
cmd_fill.backdrop = tile.backdrop;
|
2020-05-20 07:38:52 -07:00
|
|
|
cmd_fill.rgba_color = fill.rgba_color;
|
|
|
|
Cmd_Fill_write(cmd_ref, cmd_fill);
|
2020-06-05 15:07:02 -07:00
|
|
|
} else {
|
2020-05-20 11:48:05 -07:00
|
|
|
AnnoFill fill = Annotated_Fill_read(ref);
|
|
|
|
Cmd_Solid_write(cmd_ref, CmdSolid(fill.rgba_color));
|
2020-05-20 07:38:52 -07:00
|
|
|
}
|
2020-06-05 15:07:02 -07:00
|
|
|
cmd_ref.offset += Cmd_size;
|
2020-05-15 16:51:37 -07:00
|
|
|
break;
|
2020-05-15 12:28:29 -07:00
|
|
|
case Annotated_Stroke:
|
2020-06-05 15:07:02 -07:00
|
|
|
tile = Tile_read(TileRef(sh_tile_base[element_ref_ix]
|
2020-06-04 10:39:08 -07:00
|
|
|
+ (sh_tile_stride[element_ref_ix] * tile_y + tile_x) * Tile_size));
|
|
|
|
AnnoStroke stroke = Annotated_Stroke_read(ref);
|
|
|
|
CmdStroke cmd_stroke;
|
|
|
|
cmd_stroke.tile_ref = tile.tile.offset;
|
|
|
|
cmd_stroke.half_width = 0.5 * stroke.linewidth;
|
|
|
|
cmd_stroke.rgba_color = stroke.rgba_color;
|
|
|
|
alloc_cmd(cmd_ref, cmd_limit);
|
|
|
|
Cmd_Stroke_write(cmd_ref, cmd_stroke);
|
|
|
|
cmd_ref.offset += Cmd_size;
|
2020-05-15 12:28:29 -07:00
|
|
|
break;
|
|
|
|
}
|
2020-05-14 17:06:45 -07:00
|
|
|
}
|
2020-05-15 20:57:07 -07:00
|
|
|
barrier();
|
2020-05-14 17:06:45 -07:00
|
|
|
|
2020-05-13 15:35:19 -07:00
|
|
|
rd_ix += N_TILE;
|
2020-05-30 15:37:34 -07:00
|
|
|
if (rd_ix >= ready_ix && partition_ix >= n_partitions) break;
|
2020-05-15 20:57:07 -07:00
|
|
|
}
|
2020-05-23 11:25:22 -07:00
|
|
|
Cmd_End_write(cmd_ref);
|
2020-05-13 15:35:19 -07:00
|
|
|
}
|