vello/piet-gpu/shader/kernel4.comp

233 lines
9.1 KiB
Plaintext
Raw Normal View History

// This is "kernel 4" in a 4-kernel pipeline. It renders the commands
// in the per-tile command list to an image.
// Right now, this kernel stores the image in a buffer, but a better
// plan is to use a texture. This is because of limited support.
#version 450
#extension GL_GOOGLE_include_directive : enable
#extension GL_EXT_nonuniform_qualifier : enable
2020-06-15 07:32:59 +10:00
#include "setup.h"
#define CHUNK 8
2020-06-15 07:32:59 +10:00
#define CHUNK_DY (TILE_HEIGHT_PX / CHUNK)
layout(local_size_x = TILE_WIDTH_PX, local_size_y = CHUNK_DY) in;
// Same concern that this should be readonly as in kernel 3.
layout(set = 0, binding = 0) buffer PtclBuf {
uint[] ptcl;
};
layout(set = 0, binding = 1) buffer TileBuf {
uint[] tile;
};
layout(set = 0, binding = 2) buffer ClipScratchBuf {
uint[] clip_scratch;
};
layout(rgba8, set = 0, binding = 3) uniform writeonly image2D image;
layout(set = 0, binding = 4) uniform sampler2D textures[];
#include "ptcl.h"
#include "tile.h"
#define BLEND_STACK_SIZE 4
// Layout of clip_scratch buffer:
// [0] is the alloc bump offset (in units of 32 bit words, initially 0)
// Starting at 1 is a sequence of frames.
// Each frame is WIDTH * HEIGHT 32-bit words, then a link reference.
#define CLIP_LINK_OFFSET (TILE_WIDTH_PX * TILE_HEIGHT_PX)
#define CLIP_BUF_SIZE (CLIP_LINK_OFFSET + 1)
shared uint sh_clip_alloc;
// Allocate a scratch buffer for clipping. Unlike offsets in the rest of the code,
// it counts 32-bit words.
uint alloc_clip_buf(uint link) {
if (gl_LocalInvocationID.x == 0 && gl_LocalInvocationID.y == 0) {
uint alloc = atomicAdd(clip_scratch[0], CLIP_BUF_SIZE) + 1;
sh_clip_alloc = alloc;
clip_scratch[alloc + CLIP_LINK_OFFSET] = link;
}
barrier();
return sh_clip_alloc;
}
// Calculate coverage based on backdrop + coverage of each line segment
float[CHUNK] computeArea(vec2 xy, int backdrop, uint tile_ref) {
// Probably better to store as float, but conversion is no doubt cheap.
float area[CHUNK];
for (uint k = 0; k < CHUNK; k++) area[k] = float(backdrop);
TileSegRef tile_seg_ref = TileSegRef(tile_ref);
do {
TileSeg seg = TileSeg_read(tile_seg_ref);
for (uint k = 0; k < CHUNK; k++) {
vec2 my_xy = vec2(xy.x, xy.y + float(k * CHUNK_DY));
vec2 start = seg.origin - my_xy;
vec2 end = start + seg.vector;
vec2 window = clamp(vec2(start.y, end.y), 0.0, 1.0);
if (window.x != window.y) {
vec2 t = (window - start.y) / (end.y - start.y);
vec2 xs = vec2(mix(start.x, end.x, t.x), mix(start.x, end.x, t.y));
float xmin = min(min(xs.x, xs.y), 1.0) - 1e-6;
float xmax = max(xs.x, xs.y);
float b = min(xmax, 1.0);
float c = max(b, 0.0);
float d = max(xmin, 0.0);
float a = (b + 0.5 * (d * d - c * c) - xmin) / (xmax - xmin);
area[k] += a * (window.x - window.y);
}
area[k] += sign(seg.vector.x) * clamp(my_xy.y - seg.y_edge + 1.0, 0.0, 1.0);
}
tile_seg_ref = seg.next;
} while (tile_seg_ref.offset != 0);
for (uint k = 0; k < CHUNK; k++) {
area[k] = min(abs(area[k]), 1.0);
}
return area;
}
void main() {
uint tile_ix = gl_WorkGroupID.y * WIDTH_IN_TILES + gl_WorkGroupID.x;
CmdRef cmd_ref = CmdRef(tile_ix * PTCL_INITIAL_ALLOC);
uvec2 xy_uint = uvec2(gl_GlobalInvocationID.x, gl_LocalInvocationID.y + TILE_HEIGHT_PX * gl_WorkGroupID.y);
vec2 xy = vec2(xy_uint);
vec3 rgb[CHUNK];
float mask[CHUNK];
uint blend_stack[BLEND_STACK_SIZE][CHUNK];
uint blend_spill = 0;
uint blend_sp = 0;
uint clip_tos = 0;
for (uint i = 0; i < CHUNK; i++) {
rgb[i] = vec3(0.5);
if (xy_uint.x < 1024 && xy_uint.y < 1024) {
rgb[i] = texture(textures[gl_WorkGroupID.x / 64], vec2(xy_uint.x, xy_uint.y + CHUNK_DY * i) / 1024.0).rgb;
}
mask[i] = 1.0;
}
while (true) {
uint tag = Cmd_tag(cmd_ref);
if (tag == Cmd_End) {
break;
}
switch (tag) {
case Cmd_Circle:
CmdCircle circle = Cmd_Circle_read(cmd_ref);
vec4 fg_rgba = unpackUnorm4x8(circle.rgba_color).wzyx;
for (uint i = 0; i < CHUNK; i++) {
float dy = float(i * CHUNK_DY);
float r = length(vec2(xy.x, xy.y + dy) + vec2(0.5, 0.5) - circle.center.xy);
float alpha = clamp(0.5 + circle.radius - r, 0.0, 1.0);
// TODO: sRGB
rgb[i] = mix(rgb[i], fg_rgba.rgb, mask[i] * alpha * fg_rgba.a);
}
break;
case Cmd_Stroke:
// Calculate distance field from all the line segments in this tile.
CmdStroke stroke = Cmd_Stroke_read(cmd_ref);
float df[CHUNK];
for (uint k = 0; k < CHUNK; k++) df[k] = 1e9;
TileSegRef tile_seg_ref = TileSegRef(stroke.tile_ref);
do {
TileSeg seg = TileSeg_read(tile_seg_ref);
vec2 line_vec = seg.vector;
for (uint k = 0; k < CHUNK; k++) {
vec2 dpos = xy + vec2(0.5, 0.5) - seg.origin;
dpos.y += float(k * CHUNK_DY);
float t = clamp(dot(line_vec, dpos) / dot(line_vec, line_vec), 0.0, 1.0);
df[k] = min(df[k], length(line_vec * t - dpos));
2020-05-06 02:13:07 +10:00
}
tile_seg_ref = seg.next;
} while (tile_seg_ref.offset != 0);
fg_rgba = unpackUnorm4x8(stroke.rgba_color).wzyx;
for (uint k = 0; k < CHUNK; k++) {
float alpha = clamp(stroke.half_width + 0.5 - df[k], 0.0, 1.0);
rgb[k] = mix(rgb[k], fg_rgba.rgb, mask[k] * alpha * fg_rgba.a);
}
break;
case Cmd_Fill:
CmdFill fill = Cmd_Fill_read(cmd_ref);
float area[CHUNK];
area = computeArea(xy, fill.backdrop, fill.tile_ref);
fg_rgba = unpackUnorm4x8(fill.rgba_color).wzyx;
for (uint k = 0; k < CHUNK; k++) {
rgb[k] = mix(rgb[k], fg_rgba.rgb, mask[k] * area[k] * fg_rgba.a);
}
break;
case Cmd_BeginClip:
case Cmd_BeginSolidClip:
uint blend_slot = blend_sp % BLEND_STACK_SIZE;
if (blend_sp == blend_spill + BLEND_STACK_SIZE) {
// spill to scratch buffer
clip_tos = alloc_clip_buf(clip_tos);
uint base_ix = clip_tos + gl_LocalInvocationID.x + TILE_WIDTH_PX * gl_LocalInvocationID.y;
for (uint k = 0; k < CHUNK; k++) {
clip_scratch[base_ix + k * TILE_WIDTH_PX * CHUNK_DY] = blend_stack[blend_slot][k];
}
blend_spill++;
}
if (tag == Cmd_BeginClip) {
CmdBeginClip begin_clip = Cmd_BeginClip_read(cmd_ref);
area = computeArea(xy, begin_clip.backdrop, begin_clip.tile_ref);
for (uint k = 0; k < CHUNK; k++) {
blend_stack[blend_slot][k] = packUnorm4x8(vec4(rgb[k], clamp(abs(area[k]), 0.0, 1.0)));
}
} else {
CmdBeginSolidClip begin_solid_clip = Cmd_BeginSolidClip_read(cmd_ref);
float solid_alpha = begin_solid_clip.alpha;
for (uint k = 0; k < CHUNK; k++) {
blend_stack[blend_slot][k] = packUnorm4x8(vec4(rgb[k], solid_alpha));
}
}
blend_sp++;
break;
case Cmd_EndClip:
CmdEndClip end_clip = Cmd_EndClip_read(cmd_ref);
blend_slot = (blend_sp - 1) % BLEND_STACK_SIZE;
if (blend_sp == blend_spill) {
uint base_ix = clip_tos + gl_LocalInvocationID.x + TILE_WIDTH_PX * gl_LocalInvocationID.y;
for (uint k = 0; k < CHUNK; k++) {
blend_stack[blend_slot][k] = clip_scratch[base_ix + k * TILE_WIDTH_PX * CHUNK_DY];
}
clip_tos = clip_scratch[clip_tos + CLIP_LINK_OFFSET];
blend_spill--;
}
blend_sp--;
for (uint k = 0; k < CHUNK; k++) {
vec4 rgba = unpackUnorm4x8(blend_stack[blend_slot][k]);
rgb[k] = mix(rgba.rgb, rgb[k], end_clip.alpha * rgba.a);
}
break;
case Cmd_Solid:
CmdSolid solid = Cmd_Solid_read(cmd_ref);
fg_rgba = unpackUnorm4x8(solid.rgba_color).wzyx;
for (uint k = 0; k < CHUNK; k++) {
rgb[k] = mix(rgb[k], fg_rgba.rgb, mask[k] * fg_rgba.a);
}
break;
case Cmd_SolidMask:
CmdSolidMask solid_mask = Cmd_SolidMask_read(cmd_ref);
for (uint k = 0; k < CHUNK; k++) {
mask[k] = solid_mask.mask;
}
break;
case Cmd_Jump:
cmd_ref = CmdRef(Cmd_Jump_read(cmd_ref).new_ref);
continue;
}
cmd_ref.offset += Cmd_size;
}
// TODO: sRGB
for (uint i = 0; i < CHUNK; i++) {
imageStore(image, ivec2(xy_uint.x, xy_uint.y + CHUNK_DY * i), vec4(rgb[i], 1.0));
}
}