vello/piet-gpu/shader/binning.comp

141 lines
4.4 KiB
Text
Raw Normal View History

// The binning stage of the pipeline.
//
// Each workgroup processes N_TILE paths.
// Each thread processes one path and calculates a N_TILE_X x N_TILE_Y coverage mask
// based on the path bounding box to bin the paths.
#version 450
#extension GL_GOOGLE_include_directive : enable
#include "setup.h"
layout(local_size_x = N_TILE, local_size_y = 1) in;
layout(set = 0, binding = 0) buffer AnnotatedBuf {
uint[] annotated;
};
layout(set = 0, binding = 1) buffer AllocBuf {
uint n_elements; // paths
uint alloc;
};
layout(set = 0, binding = 2) buffer BinsBuf {
uint[] bins;
};
#include "annotated.h"
#include "bins.h"
// scale factors useful for converting coordinates to bins
#define SX (1.0 / float(N_TILE_X * TILE_WIDTH_PX))
#define SY (1.0 / float(N_TILE_Y * TILE_HEIGHT_PX))
// Constant not available in GLSL. Also consider uintBitsToFloat(0x7f800000)
#define INFINITY (1.0 / 0.0)
// Note: cudaraster has N_TILE + 1 to cut down on bank conflicts.
// Bitmaps are sliced (256bit into 8 (N_SLICE) 32bit submaps)
shared uint bitmaps[N_SLICE][N_TILE];
shared uint count[N_SLICE][N_TILE];
shared uint sh_chunk_start[N_TILE];
void main() {
2020-05-12 19:54:19 -07:00
uint my_n_elements = n_elements;
uint my_partition = gl_WorkGroupID.x;
for (uint i = 0; i < N_SLICE; i++) {
bitmaps[i][gl_LocalInvocationID.x] = 0;
}
barrier();
// Read inputs and determine coverage of bins
uint element_ix = my_partition * N_TILE + gl_LocalInvocationID.x;
AnnotatedRef ref = AnnotatedRef(element_ix * Annotated_size);
uint tag = Annotated_Nop;
if (element_ix < my_n_elements) {
tag = Annotated_tag(ref);
}
int x0 = 0, y0 = 0, x1 = 0, y1 = 0;
switch (tag) {
case Annotated_Fill:
case Annotated_FillMask:
case Annotated_FillMaskInv:
case Annotated_Stroke:
case Annotated_BeginClip:
case Annotated_EndClip:
// Note: we take advantage of the fact that these drawing elements
// have the bbox at the same place in their layout.
AnnoFill fill = Annotated_Fill_read(ref);
x0 = int(floor(fill.bbox.x * SX));
y0 = int(floor(fill.bbox.y * SY));
x1 = int(ceil(fill.bbox.z * SX));
y1 = int(ceil(fill.bbox.w * SY));
break;
}
// At this point, we run an iterator over the coverage area,
// trying to keep divergence low.
// Right now, it's just a bbox, but we'll get finer with
// segments.
x0 = clamp(x0, 0, N_TILE_X);
x1 = clamp(x1, x0, N_TILE_X);
y0 = clamp(y0, 0, N_TILE_Y);
y1 = clamp(y1, y0, N_TILE_Y);
if (x0 == x1) y1 = y0;
int x = x0, y = y0;
uint my_slice = gl_LocalInvocationID.x / 32;
uint my_mask = 1 << (gl_LocalInvocationID.x & 31);
while (y < y1) {
atomicOr(bitmaps[my_slice][y * N_TILE_X + x], my_mask);
x++;
if (x == x1) {
x = x0;
y++;
}
}
barrier();
// Allocate output segments.
uint element_count = 0;
for (uint i = 0; i < N_SLICE; i++) {
element_count += bitCount(bitmaps[i][gl_LocalInvocationID.x]);
count[i][gl_LocalInvocationID.x] = element_count;
}
// element_count is number of elements covering bin for this invocation.
uint chunk_start = 0;
if (element_count != 0) {
// TODO: aggregate atomic adds (subgroup is probably fastest)
chunk_start = atomicAdd(alloc, element_count * BinInstance_size);
sh_chunk_start[gl_LocalInvocationID.x] = chunk_start;
}
// Note: it might be more efficient for reading to do this in the
// other order (each bin is a contiguous sequence of partitions)
uint out_ix = (my_partition * N_TILE + gl_LocalInvocationID.x) * 2;
bins[out_ix] = element_count;
bins[out_ix + 1] = chunk_start;
barrier();
// Use similar strategy as Laine & Karras paper; loop over bbox of bins
// touched by this element
x = x0;
y = y0;
while (y < y1) {
uint bin_ix = y * N_TILE_X + x;
uint out_mask = bitmaps[my_slice][bin_ix];
if ((out_mask & my_mask) != 0) {
uint idx = bitCount(out_mask & (my_mask - 1));
if (my_slice > 0) {
idx += count[my_slice - 1][bin_ix];
}
uint out_offset = sh_chunk_start[bin_ix] + idx * BinInstance_size;
BinInstance_write(BinInstanceRef(out_offset), BinInstance(element_ix));
}
x++;
if (x == x1) {
x = x0;
y++;
}
}
}