vello/piet-gpu/shader/coarse.comp

305 lines
12 KiB
Plaintext
Raw Normal View History

// The coarse rasterizer stage of the pipeline.
//
// As input we have the ordered partitions of paths from the binning phase and
// the annotated tile list of segments and backdrop per path.
//
// Each workgroup operating on one bin by stream compacting
// the elements corresponding to the bin.
//
// As output we have an ordered command stream per tile. Every tile from a path (backdrop + segment list) will be encoded.
#version 450
#extension GL_GOOGLE_include_directive : enable
#include "setup.h"
layout(local_size_x = N_TILE, local_size_y = 1) in;
layout(set = 0, binding = 0) buffer AnnotatedBuf {
uint[] annotated;
};
layout(set = 0, binding = 1) buffer BinsBuf {
uint[] bins;
};
layout(set = 0, binding = 2) buffer TileBuf {
uint[] tile;
};
layout(set = 0, binding = 3) buffer AllocBuf {
uint n_elements;
uint alloc;
};
layout(set = 0, binding = 4) buffer PtclBuf {
uint[] ptcl;
};
#include "annotated.h"
#include "bins.h"
#include "tile.h"
#include "ptcl.h"
#define LG_N_PART_READ (7 + LG_WG_FACTOR)
2020-05-31 08:37:34 +10:00
#define N_PART_READ (1 << LG_N_PART_READ)
shared uint sh_elements[N_TILE];
shared float sh_right_edge[N_TILE];
2020-05-31 08:37:34 +10:00
// Number of elements in the partition; prefix sum.
shared uint sh_part_count[N_PART_READ];
shared uint sh_part_elements[N_PART_READ];
shared uint sh_bitmaps[N_SLICE][N_TILE];
shared uint sh_tile_count[N_TILE];
// The width of the tile rect for the element, intersected with this bin
shared uint sh_tile_width[N_TILE];
shared uint sh_tile_x0[N_TILE];
shared uint sh_tile_y0[N_TILE];
// These are set up so base + tile_y * stride + tile_x points to a Tile.
shared uint sh_tile_base[N_TILE];
shared uint sh_tile_stride[N_TILE];
// Perhaps cmd_limit should be a global? This is a style question.
void alloc_cmd(inout CmdRef cmd_ref, inout uint cmd_limit) {
if (cmd_ref.offset > cmd_limit) {
uint new_cmd = atomicAdd(alloc, PTCL_INITIAL_ALLOC);
CmdJump jump = CmdJump(new_cmd);
Cmd_Jump_write(cmd_ref, jump);
cmd_ref = CmdRef(new_cmd);
cmd_limit = new_cmd + PTCL_INITIAL_ALLOC - 2 * Cmd_size;
}
}
void main() {
// Could use either linear or 2d layouts for both dispatch and
// invocations within the workgroup. We'll use variables to abstract.
uint bin_ix = N_TILE_X * gl_WorkGroupID.y + gl_WorkGroupID.x;
uint partition_ix = 0;
2020-05-31 08:37:34 +10:00
uint n_partitions = (n_elements + N_TILE - 1) / N_TILE;
uint th_ix = gl_LocalInvocationID.x;
// Coordinates of top left of bin, in tiles.
uint bin_tile_x = N_TILE_X * gl_WorkGroupID.x;
uint bin_tile_y = N_TILE_Y * gl_WorkGroupID.y;
uint tile_x = gl_LocalInvocationID.x % N_TILE_X;
uint tile_y = gl_LocalInvocationID.x / N_TILE_X;
uint this_tile_ix = (bin_tile_y + tile_y) * WIDTH_IN_TILES + bin_tile_x + tile_x;
CmdRef cmd_ref = CmdRef(this_tile_ix * PTCL_INITIAL_ALLOC);
uint cmd_limit = cmd_ref.offset + PTCL_INITIAL_ALLOC - 2 * Cmd_size;
2020-05-31 08:37:34 +10:00
// I'm sure we can figure out how to do this with at least one fewer register...
// Items up to rd_ix have been read from sh_elements
uint rd_ix = 0;
2020-05-31 08:37:34 +10:00
// Items up to wr_ix have been written into sh_elements
uint wr_ix = 0;
// Items between part_start_ix and ready_ix are ready to be transferred from sh_part_elements
uint part_start_ix = 0;
uint ready_ix = 0;
while (true) {
for (uint i = 0; i < N_SLICE; i++) {
sh_bitmaps[i][th_ix] = 0;
}
2020-05-31 08:37:34 +10:00
// parallel read of input partitions
do {
if (ready_ix == wr_ix && partition_ix < n_partitions) {
part_start_ix = ready_ix;
uint count = 0;
if (th_ix < N_PART_READ && partition_ix + th_ix < n_partitions) {
uint in_ix = ((partition_ix + th_ix) * N_TILE + bin_ix) * 2;
count = bins[in_ix];
sh_part_elements[th_ix] = bins[in_ix + 1];
}
// prefix sum of counts
for (uint i = 0; i < LG_N_PART_READ; i++) {
if (th_ix < N_PART_READ) {
sh_part_count[th_ix] = count;
}
barrier();
if (th_ix < N_PART_READ) {
if (th_ix >= (1 << i)) {
count += sh_part_count[th_ix - (1 << i)];
}
}
barrier();
}
if (th_ix < N_PART_READ) {
sh_part_count[th_ix] = part_start_ix + count;
}
barrier();
ready_ix = sh_part_count[N_PART_READ - 1];
partition_ix += N_PART_READ;
}
// use binary search to find element to read
uint ix = rd_ix + th_ix;
if (ix >= wr_ix && ix < ready_ix) {
uint part_ix = 0;
for (uint i = 0; i < LG_N_PART_READ; i++) {
uint probe = part_ix + ((N_PART_READ / 2) >> i);
if (ix >= sh_part_count[probe - 1]) {
part_ix = probe;
}
}
ix -= part_ix > 0 ? sh_part_count[part_ix - 1] : part_start_ix;
BinInstanceRef inst_ref = BinInstanceRef(sh_part_elements[part_ix]);
BinInstance inst = BinInstance_read(BinInstance_index(inst_ref, ix));
sh_elements[th_ix] = inst.element_ix;
sh_right_edge[th_ix] = inst.right_edge;
}
2020-05-31 08:37:34 +10:00
barrier();
wr_ix = min(rd_ix + N_TILE, ready_ix);
} while (wr_ix - rd_ix < N_TILE && (wr_ix < ready_ix || partition_ix < n_partitions));
// We've done the merge and filled the buffer.
// Read one element, compute coverage.
uint tag = Annotated_Nop;
uint element_ix;
AnnotatedRef ref;
float right_edge = 0.0;
if (th_ix + rd_ix < wr_ix) {
element_ix = sh_elements[th_ix];
right_edge = sh_right_edge[th_ix];
ref = AnnotatedRef(element_ix * Annotated_size);
tag = Annotated_tag(ref);
}
// Bounding box of element in pixel coordinates.
uint tile_count;
switch (tag) {
case Annotated_Fill:
case Annotated_Stroke:
// Because the only elements we're processing right now are
// paths, we can just use the element index as the path index.
// In future, when we're doing a bunch of stuff, the path index
// should probably be stored in the annotated element.
uint path_ix = element_ix;
Path path = Path_read(PathRef(path_ix * Path_size));
uint stride = path.bbox.z - path.bbox.x;
sh_tile_stride[th_ix] = stride;
int dx = int(path.bbox.x) - int(bin_tile_x);
int dy = int(path.bbox.y) - int(bin_tile_y);
int x0 = clamp(dx, 0, N_TILE_X);
int y0 = clamp(dy, 0, N_TILE_Y);
int x1 = clamp(int(path.bbox.z) - int(bin_tile_x), 0, N_TILE_X);
int y1 = clamp(int(path.bbox.w) - int(bin_tile_y), 0, N_TILE_Y);
sh_tile_width[th_ix] = uint(x1 - x0);
sh_tile_x0[th_ix] = x0;
sh_tile_y0[th_ix] = y0;
tile_count = uint(x1 - x0) * uint(y1 - y0);
// base relative to bin
uint base = path.tiles.offset - uint(dy * stride + dx) * Tile_size;
sh_tile_base[th_ix] = base;
break;
default:
tile_count = 0;
break;
}
// Prefix sum of sh_tile_count
sh_tile_count[th_ix] = tile_count;
for (uint i = 0; i < LG_N_TILE; i++) {
barrier();
if (th_ix >= (1 << i)) {
tile_count += sh_tile_count[th_ix - (1 << i)];
}
barrier();
sh_tile_count[th_ix] = tile_count;
}
barrier();
uint total_tile_count = sh_tile_count[N_TILE - 1];
for (uint ix = th_ix; ix < total_tile_count; ix += N_TILE) {
// Binary search to find element
uint el_ix = 0;
for (uint i = 0; i < LG_N_TILE; i++) {
uint probe = el_ix + ((N_TILE / 2) >> i);
if (ix >= sh_tile_count[probe - 1]) {
el_ix = probe;
}
}
uint seq_ix = ix - (el_ix > 0 ? sh_tile_count[el_ix - 1] : 0);
uint width = sh_tile_width[el_ix];
uint x = sh_tile_x0[el_ix] + seq_ix % width;
uint y = sh_tile_y0[el_ix] + seq_ix / width;
Tile tile = Tile_read(TileRef(sh_tile_base[el_ix] + (sh_tile_stride[el_ix] * y + x) * Tile_size));
if (tile.tile.offset != 0 || tile.backdrop != 0) {
uint el_slice = el_ix / 32;
uint el_mask = 1 << (el_ix & 31);
atomicOr(sh_bitmaps[el_slice][y * N_TILE_X + x], el_mask);
}
}
barrier();
// Output non-segment elements for this tile. The thread does a sequential walk
// through the non-segment elements, and for segments, count and backdrop are
// aggregated using bit counting.
uint slice_ix = 0;
uint bitmap = sh_bitmaps[0][th_ix];
while (true) {
if (bitmap == 0) {
slice_ix++;
if (slice_ix == N_SLICE) {
break;
}
bitmap = sh_bitmaps[slice_ix][th_ix];
if (bitmap == 0) {
continue;
}
}
uint element_ref_ix = slice_ix * 32 + findLSB(bitmap);
uint element_ix = sh_elements[element_ref_ix];
// Clear LSB
bitmap &= bitmap - 1;
// At this point, we read the element again from global memory.
// If that turns out to be expensive, maybe we can pack it into
// shared memory (or perhaps just the tag).
ref = AnnotatedRef(element_ix * Annotated_size);
tag = Annotated_tag(ref);
switch (tag) {
case Annotated_Fill:
Tile tile = Tile_read(TileRef(sh_tile_base[element_ref_ix]
+ (sh_tile_stride[element_ref_ix] * tile_y + tile_x) * Tile_size));
AnnoFill fill = Annotated_Fill_read(ref);
alloc_cmd(cmd_ref, cmd_limit);
if (tile.tile.offset != 0) {
CmdFill cmd_fill;
cmd_fill.tile_ref = tile.tile.offset;
cmd_fill.backdrop = tile.backdrop;
cmd_fill.rgba_color = fill.rgba_color;
Cmd_Fill_write(cmd_ref, cmd_fill);
} else {
Cmd_Solid_write(cmd_ref, CmdSolid(fill.rgba_color));
}
cmd_ref.offset += Cmd_size;
break;
case Annotated_Stroke:
tile = Tile_read(TileRef(sh_tile_base[element_ref_ix]
+ (sh_tile_stride[element_ref_ix] * tile_y + tile_x) * Tile_size));
AnnoStroke stroke = Annotated_Stroke_read(ref);
CmdStroke cmd_stroke;
cmd_stroke.tile_ref = tile.tile.offset;
cmd_stroke.half_width = 0.5 * stroke.linewidth;
cmd_stroke.rgba_color = stroke.rgba_color;
alloc_cmd(cmd_ref, cmd_limit);
Cmd_Stroke_write(cmd_ref, cmd_stroke);
cmd_ref.offset += Cmd_size;
break;
}
}
barrier();
rd_ix += N_TILE;
2020-05-31 08:37:34 +10:00
if (rd_ix >= ready_ix && partition_ix >= n_partitions) break;
}
Cmd_End_write(cmd_ref);
}