Start work on parallel segment output

Output of segments is in parallel. Getting closer, some problems with
chaining but mostly correct.
This commit is contained in:
Raph Levien 2020-05-22 14:18:39 -07:00
parent 55df3e6cc8
commit 24b3def0a1
5 changed files with 142 additions and 68 deletions

View file

@ -107,8 +107,8 @@ fn main() -> Result<(), Error> {
/* /*
let mut data: Vec<u32> = Default::default(); let mut data: Vec<u32> = Default::default();
device.read_buffer(&renderer.bin_buf, &mut data).unwrap(); device.read_buffer(&renderer.ptcl_buf, &mut data).unwrap();
//piet_gpu::dump_k1_data(&data); piet_gpu::dump_k1_data(&data);
//trace_merge(&data); //trace_merge(&data);
*/ */

View file

@ -44,6 +44,14 @@ shared uint sh_elements_ref;
shared uint sh_bitmaps[N_SLICE][N_TILE]; shared uint sh_bitmaps[N_SLICE][N_TILE];
shared uint sh_backdrop[N_SLICE][N_TILE]; shared uint sh_backdrop[N_SLICE][N_TILE];
shared uint sh_bd_sign[N_SLICE]; shared uint sh_bd_sign[N_SLICE];
shared uint sh_is_segment[N_SLICE];
// Shared state for parallel segment output stage
// Count of total number of segments in each tile, then
// inclusive prefix sum of same.
shared uint sh_seg_count[N_TILE];
shared uint sh_seg_alloc;
// scale factors useful for converting coordinates to tiles // scale factors useful for converting coordinates to tiles
#define SX (1.0 / float(TILE_WIDTH_PX)) #define SX (1.0 / float(TILE_WIDTH_PX))
@ -60,26 +68,6 @@ void alloc_cmd(inout CmdRef cmd_ref, inout uint cmd_limit) {
} }
} }
// Ensure that there is space to encode a segment.
void alloc_chunk(inout uint chunk_n_segs, inout SegChunkRef seg_chunk_ref,
inout SegChunkRef first_seg_chunk, inout uint seg_limit)
{
// TODO: Reduce divergence of atomic alloc?
if (chunk_n_segs == 0) {
if (seg_chunk_ref.offset + 40 > seg_limit) {
seg_chunk_ref.offset = atomicAdd(alloc, SEG_CHUNK_ALLOC);
seg_limit = seg_chunk_ref.offset + SEG_CHUNK_ALLOC - Segment_size;
}
first_seg_chunk = seg_chunk_ref;
} else if (seg_chunk_ref.offset + SegChunk_size + Segment_size * chunk_n_segs > seg_limit) {
uint new_chunk_ref = atomicAdd(alloc, SEG_CHUNK_ALLOC);
seg_limit = new_chunk_ref + SEG_CHUNK_ALLOC - Segment_size;
SegChunk_write(seg_chunk_ref, SegChunk(chunk_n_segs, SegChunkRef(new_chunk_ref)));
seg_chunk_ref.offset = new_chunk_ref;
chunk_n_segs = 0;
}
}
// Accumulate delta to backdrop. // Accumulate delta to backdrop.
// //
// Each bit for which bd_bitmap is 1 and bd_sign is 1 counts as +1, and each // Each bit for which bd_bitmap is 1 and bd_sign is 1 counts as +1, and each
@ -128,6 +116,7 @@ void main() {
for (uint i = 0; i < N_SLICE; i++) { for (uint i = 0; i < N_SLICE; i++) {
sh_bitmaps[i][th_ix] = 0; sh_bitmaps[i][th_ix] = 0;
sh_backdrop[i][th_ix] = 0; sh_backdrop[i][th_ix] = 0;
sh_is_segment[th_ix] = 0;
} }
while (wr_ix - rd_ix <= N_TILE) { while (wr_ix - rd_ix <= N_TILE) {
@ -219,6 +208,7 @@ void main() {
atomicAnd(sh_bd_sign[my_slice], ~my_mask); atomicAnd(sh_bd_sign[my_slice], ~my_mask);
} }
} }
atomicOr(sh_is_segment[my_slice], my_mask);
// Set up for per-scanline coverage formula, below. // Set up for per-scanline coverage formula, below.
float invslope = abs(dy) < 1e-9 ? 1e9 : dx / dy; float invslope = abs(dy) < 1e-9 ? 1e9 : dx / dy;
c = (line.stroke.x + abs(invslope) * (0.5 * float(TILE_HEIGHT_PX) + line.stroke.y)) * SX; c = (line.stroke.x + abs(invslope) * (0.5 * float(TILE_HEIGHT_PX) + line.stroke.y)) * SX;
@ -279,14 +269,102 @@ void main() {
} }
barrier(); barrier();
// Output elements for this tile, based on bitmaps. // We've computed coverage and other info for each element in the input, now for
// the output stage. We'll do segments first using a more parallel algorithm.
uint seg_count = 0;
for (uint i = 0; i < N_SLICE; i++) {
// Count each segment as 1 and each non-segment element as 1. A finer
// approach would be to count bytes accurately (non-segment elements that
// are not strokes and fills wouldn't count).
seg_count += bitCount(sh_bitmaps[i][th_ix]);
}
sh_seg_count[th_ix] = seg_count;
// Prefix sum of sh_seg_count
for (uint i = 0; i < LG_N_TILE; i++) {
barrier();
if (th_ix >= (1 << i)) {
seg_count += sh_seg_count[th_ix - (1 << i)];
}
barrier();
sh_seg_count[th_ix] = seg_count;
}
if (th_ix == N_TILE - 1) {
sh_seg_alloc = atomicAdd(alloc, seg_count * Segment_size + SegChunk_size);
}
barrier();
uint total_seg_count = sh_seg_count[N_TILE - 1];
uint seg_alloc = sh_seg_alloc;
// Output buffer is allocated as segments for each tile laid end-to-end,
// but with gaps for non-segment elements (to fit the linked list headers).
for (uint ix = th_ix; ix < total_seg_count; ix += N_TILE) {
// Find the work item; this thread is now not bound to an element or tile.
// First find the tile (by binary search)
uint tile_ix = 0;
for (uint i = 0; i < LG_N_TILE; i++) {
uint probe = tile_ix + ((N_TILE / 2) >> i);
if (ix >= sh_seg_count[probe - 1]) {
tile_ix = probe;
}
}
// Now, sh_seg_count[tile_ix - 1] <= ix < sh_seg_count[tile_ix].
// (considering sh_seg_count[-1] == 0)
// Index of segment within tile's segments
uint seq_ix = ix;
// Maybe consider a sentinel value to avoid the conditional?
if (tile_ix > 0) {
seq_ix -= sh_seg_count[tile_ix - 1];
}
// Find the segment. This is done by linear scan through the bitmaps of the
// tile, accelerated by bit counting. Binary search might help, maybe not.
uint slice_ix = 0;
uint seq_bits;
while (true) {
seq_bits = sh_bitmaps[slice_ix][tile_ix];
uint this_count = bitCount(seq_bits);
if (this_count > seq_ix) {
break;
}
seq_ix -= this_count;
slice_ix++;
}
// Now find position of nth bit set (n = seq_ix) in seq_bits; binary search
uint bit_ix = 0;
for (int i = 0; i < 5; i++) {
uint probe = bit_ix + (16 >> i);
if (seq_ix >= bitCount(seq_bits & ((1 << probe) - 1))) {
bit_ix = probe;
}
}
if ((sh_is_segment[slice_ix] & (1 << bit_ix)) != 0) {
uint out_offset = seg_alloc + Segment_size * ix + SegChunk_size;
uint rd_el_ix = (rd_ix + slice_ix * 32 + bit_ix) % N_RINGBUF;
uint element_ix = sh_elements[rd_el_ix];
ref = AnnotatedRef(element_ix * Annotated_size);
AnnoStrokeLineSeg line = Annotated_StrokeLine_read(ref);
Segment seg = Segment(line.p0, line.p1);
Segment_write(SegmentRef(seg_alloc + Segment_size * ix + SegChunk_size), seg);
}
}
// Output non-segment elements for this tile. The thread does a sequential walk
// through the non-segment elements, and for segments, count and backdrop are
// aggregated using bit counting.
uint slice_ix = 0; uint slice_ix = 0;
uint bitmap = sh_bitmaps[0][th_ix]; uint bitmap = sh_bitmaps[0][th_ix];
uint bd_bitmap = sh_backdrop[0][th_ix]; uint bd_bitmap = sh_backdrop[0][th_ix];
uint bd_sign = sh_bd_sign[0]; uint bd_sign = sh_bd_sign[0];
uint is_segment = sh_is_segment[0];
uint seg_start = th_ix == 0 ? 0 : sh_seg_count[th_ix - 1];
seg_count = 0;
while (true) { while (true) {
if (bitmap == 0) { uint nonseg_bitmap = bitmap & ~is_segment;
if (nonseg_bitmap == 0) {
backdrop += count_backdrop(bd_bitmap, bd_sign); backdrop += count_backdrop(bd_bitmap, bd_sign);
seg_count += bitCount(bitmap & is_segment);
slice_ix++; slice_ix++;
if (slice_ix == N_SLICE) { if (slice_ix == N_SLICE) {
break; break;
@ -294,16 +372,19 @@ void main() {
bitmap = sh_bitmaps[slice_ix][th_ix]; bitmap = sh_bitmaps[slice_ix][th_ix];
bd_bitmap = sh_backdrop[slice_ix][th_ix]; bd_bitmap = sh_backdrop[slice_ix][th_ix];
bd_sign = sh_bd_sign[slice_ix]; bd_sign = sh_bd_sign[slice_ix];
if (bitmap == 0) { is_segment = sh_is_segment[slice_ix];
nonseg_bitmap = bitmap & ~is_segment;
if (nonseg_bitmap == 0) {
continue; continue;
} }
} }
uint element_ref_ix = slice_ix * 32 + findLSB(bitmap); uint element_ref_ix = slice_ix * 32 + findLSB(nonseg_bitmap);
uint element_ix = sh_elements[(rd_ix + element_ref_ix) % N_RINGBUF]; uint element_ix = sh_elements[(rd_ix + element_ref_ix) % N_RINGBUF];
// Bits up to and including the lsb // Bits up to and including the lsb
uint bd_mask = (bitmap - 1) ^ bitmap; uint bd_mask = (nonseg_bitmap - 1) ^ nonseg_bitmap;
backdrop += count_backdrop(bd_bitmap & bd_mask, bd_sign); backdrop += count_backdrop(bd_bitmap & bd_mask, bd_sign);
seg_count += bitCount(bitmap & bd_mask & is_segment);
// Clear bits that have been consumed. // Clear bits that have been consumed.
bd_bitmap &= ~bd_mask; bd_bitmap &= ~bd_mask;
bitmap &= ~bd_mask; bitmap &= ~bd_mask;
@ -315,40 +396,8 @@ void main() {
tag = Annotated_tag(ref); tag = Annotated_tag(ref);
switch (tag) { switch (tag) {
case Annotated_FillLine:
AnnoFillLineSeg fill_line = Annotated_FillLine_read(ref);
// This is basically the same logic as piet-metal, but should be made numerically robust.
vec2 tile_xy = vec2(tile_x * TILE_WIDTH_PX, tile_y * TILE_HEIGHT_PX);
float yEdge = mix(fill_line.p0.y, fill_line.p1.y, (tile_xy.x - fill_line.p0.x) / (fill_line.p1.x - fill_line.p0.x));
if (min(fill_line.p0.x, fill_line.p1.x) < tile_xy.x && yEdge >= tile_xy.y && yEdge < tile_xy.y + TILE_HEIGHT_PX) {
Segment edge_seg;
if (fill_line.p0.x > fill_line.p1.x) {
fill_line.p1 = vec2(tile_xy.x, yEdge);
edge_seg.start = fill_line.p1;
edge_seg.end = vec2(tile_xy.x, tile_xy.y + TILE_HEIGHT_PX);
} else {
fill_line.p0 = vec2(tile_xy.x, yEdge);
edge_seg.start = vec2(tile_xy.x, tile_xy.y + TILE_HEIGHT_PX);
edge_seg.end = fill_line.p0;
}
alloc_chunk(chunk_n_segs, seg_chunk_ref, first_seg_chunk, seg_limit);
Segment_write(SegmentRef(seg_chunk_ref.offset + SegChunk_size + Segment_size * chunk_n_segs), edge_seg);
chunk_n_segs++;
}
Segment fill_seg = Segment(fill_line.p0, fill_line.p1);
alloc_chunk(chunk_n_segs, seg_chunk_ref, first_seg_chunk, seg_limit);
Segment_write(SegmentRef(seg_chunk_ref.offset + SegChunk_size + Segment_size * chunk_n_segs), fill_seg);
chunk_n_segs++;
break;
case Annotated_StrokeLine:
AnnoStrokeLineSeg line = Annotated_StrokeLine_read(ref);
Segment seg = Segment(line.p0, line.p1);
alloc_chunk(chunk_n_segs, seg_chunk_ref, first_seg_chunk, seg_limit);
Segment_write(SegmentRef(seg_chunk_ref.offset + SegChunk_size + Segment_size * chunk_n_segs), seg);
chunk_n_segs++;
break;
case Annotated_Fill: case Annotated_Fill:
if (chunk_n_segs > 0) { if (seg_count > 0) {
AnnoFill fill = Annotated_Fill_read(ref); AnnoFill fill = Annotated_Fill_read(ref);
SegChunk_write(seg_chunk_ref, SegChunk(chunk_n_segs, SegChunkRef(0))); SegChunk_write(seg_chunk_ref, SegChunk(chunk_n_segs, SegChunkRef(0)));
seg_chunk_ref.offset += SegChunk_size + Segment_size * chunk_n_segs; seg_chunk_ref.offset += SegChunk_size + Segment_size * chunk_n_segs;
@ -367,12 +416,21 @@ void main() {
cmd_ref.offset += Cmd_size; cmd_ref.offset += Cmd_size;
} }
backdrop = 0; backdrop = 0;
seg_count = 0;
break; break;
case Annotated_Stroke: case Annotated_Stroke:
if (chunk_n_segs > 0 || seg_count > 0) {
uint chunk_offset = seg_count > 0 ? seg_alloc + seg_start * Segment_size : 0;
SegChunkRef chunk_start = SegChunkRef(chunk_offset);
if (chunk_n_segs > 0) { if (chunk_n_segs > 0) {
SegChunk_write(seg_chunk_ref, SegChunk(chunk_n_segs, chunk_start));
} else {
first_seg_chunk = chunk_start;
}
if (seg_count > 0) {
SegChunk_write(chunk_start, SegChunk(seg_count, SegChunkRef(0)));
}
AnnoStroke stroke = Annotated_Stroke_read(ref); AnnoStroke stroke = Annotated_Stroke_read(ref);
SegChunk_write(seg_chunk_ref, SegChunk(chunk_n_segs, SegChunkRef(0)));
seg_chunk_ref.offset += SegChunk_size + Segment_size * chunk_n_segs;
CmdStroke cmd_stroke; CmdStroke cmd_stroke;
cmd_stroke.seg_ref = first_seg_chunk.offset; cmd_stroke.seg_ref = first_seg_chunk.offset;
cmd_stroke.half_width = 0.5 * stroke.linewidth; cmd_stroke.half_width = 0.5 * stroke.linewidth;
@ -382,9 +440,25 @@ void main() {
cmd_ref.offset += Cmd_size; cmd_ref.offset += Cmd_size;
chunk_n_segs = 0; chunk_n_segs = 0;
} }
seg_start += seg_count + 1;
seg_count = 0;
break;
default:
// This shouldn't happen, but just in case.
seg_start++;
break; break;
} }
} }
if (seg_count > 0) {
SegChunkRef chunk_start = SegChunkRef(seg_alloc + seg_start * Segment_size);
if (chunk_n_segs > 0) {
SegChunk_write(seg_chunk_ref, SegChunk(chunk_n_segs, chunk_start));
} else {
first_seg_chunk = chunk_start;
}
seg_chunk_ref = chunk_start;
chunk_n_segs = seg_count;
}
barrier(); barrier();
rd_ix += N_TILE; rd_ix += N_TILE;

Binary file not shown.

View file

@ -59,8 +59,8 @@ pub fn render_scene(rc: &mut impl RenderContext) {
&Color::WHITE, &Color::WHITE,
5.0, 5.0,
); );
//render_cardioid(rc); render_cardioid(rc);
render_tiger(rc); //render_tiger(rc);
} }
#[allow(unused)] #[allow(unused)]

View file

@ -58,11 +58,11 @@ impl PicoSvg {
} }
pub fn render(&self, rc: &mut impl RenderContext) { pub fn render(&self, rc: &mut impl RenderContext) {
for item in &self.items { for item in self.items.iter().take(30) {
match item { match item {
Item::Fill(fill_item) => { Item::Fill(fill_item) => {
rc.fill(&fill_item.path, &fill_item.color); //rc.fill(&fill_item.path, &fill_item.color);
//rc.stroke(&fill_item.path, &fill_item.color, 1.0); rc.stroke(&fill_item.path, &fill_item.color, 1.0);
} }
Item::Stroke(stroke_item) => { Item::Stroke(stroke_item) => {
rc.stroke(&stroke_item.path, &stroke_item.color, stroke_item.width); rc.stroke(&stroke_item.path, &stroke_item.color, stroke_item.width);