Output multiple pixels per thread in k4

In kernel 4, compute a chunk of pixels rather than just one per thread.
This is a dramatic speedup.

(This commit cherry-picked from another working branch)
This commit is contained in:
Raph Levien 2020-05-25 15:45:06 -07:00
parent 37a6f6aa51
commit 319aa703c4
2 changed files with 59 additions and 33 deletions

View file

@ -6,10 +6,13 @@
#version 450 #version 450
#extension GL_GOOGLE_include_directive : enable #extension GL_GOOGLE_include_directive : enable
#extension GL_KHR_shader_subgroup_basic : enable
layout(local_size_x = 16, local_size_y = 16) in; #define CHUNK 8
#define CHUNK_DY (16 / CHUNK)
layout(local_size_x = 16, local_size_y = 2) in;
// This should be annotated readonly but infra doesn't support that yet. // Same concern that this should be readonly as in kernel 3.
layout(set = 0, binding = 0) buffer PtclBuf { layout(set = 0, binding = 0) buffer PtclBuf {
uint[] ptcl; uint[] ptcl;
}; };
@ -24,11 +27,14 @@ void main() {
uint tile_ix = gl_WorkGroupID.y * WIDTH_IN_TILES + gl_WorkGroupID.x; uint tile_ix = gl_WorkGroupID.y * WIDTH_IN_TILES + gl_WorkGroupID.x;
CmdRef cmd_ref = CmdRef(tile_ix * PTCL_INITIAL_ALLOC); CmdRef cmd_ref = CmdRef(tile_ix * PTCL_INITIAL_ALLOC);
uvec2 xy_uint = gl_GlobalInvocationID.xy; uvec2 xy_uint = uvec2(gl_GlobalInvocationID.x, gl_LocalInvocationID.y + TILE_HEIGHT_PX * gl_WorkGroupID.y);
vec2 xy = vec2(xy_uint); vec2 xy = vec2(xy_uint);
vec2 uv = xy * vec2(1.0 / IMAGE_WIDTH, 1.0 / IMAGE_HEIGHT); vec2 uv = xy * vec2(1.0 / IMAGE_WIDTH, 1.0 / IMAGE_HEIGHT);
//vec3 rgb = uv.xyy; //vec3 rgb = uv.xyy;
vec3 rgb = vec3(0.75); vec3 rgb[CHUNK];
for (uint i = 0; i < CHUNK; i++) {
rgb[i] = vec3(0.5);
}
while (true) { while (true) {
uint tag = Cmd_tag(cmd_ref); uint tag = Cmd_tag(cmd_ref);
@ -38,15 +44,19 @@ void main() {
switch (tag) { switch (tag) {
case Cmd_Circle: case Cmd_Circle:
CmdCircle circle = Cmd_Circle_read(cmd_ref); CmdCircle circle = Cmd_Circle_read(cmd_ref);
float r = length(xy + vec2(0.5, 0.5) - circle.center.xy);
float alpha = clamp(0.5 + circle.radius - r, 0.0, 1.0);
vec4 fg_rgba = unpackUnorm4x8(circle.rgba_color).wzyx; vec4 fg_rgba = unpackUnorm4x8(circle.rgba_color).wzyx;
for (uint i = 0; i < CHUNK; i++) {
float dy = float(i * CHUNK_DY);
float r = length(vec2(xy.x, xy.y + dy) + vec2(0.5, 0.5) - circle.center.xy);
float alpha = clamp(0.5 + circle.radius - r, 0.0, 1.0);
// TODO: sRGB // TODO: sRGB
rgb = mix(rgb, fg_rgba.rgb, alpha * fg_rgba.a); rgb[i] = mix(rgb[i], fg_rgba.rgb, alpha * fg_rgba.a);
}
break; break;
case Cmd_Stroke: case Cmd_Stroke:
CmdStroke stroke = Cmd_Stroke_read(cmd_ref); CmdStroke stroke = Cmd_Stroke_read(cmd_ref);
float df = 1e9; float df[CHUNK];
for (uint k = 0; k < CHUNK; k++) df[k] = 1e9;
SegChunkRef seg_chunk_ref = stroke.seg_ref; SegChunkRef seg_chunk_ref = stroke.seg_ref;
do { do {
SegChunk seg_chunk = SegChunk_read(seg_chunk_ref); SegChunk seg_chunk = SegChunk_read(seg_chunk_ref);
@ -54,28 +64,36 @@ void main() {
for (int i = 0; i < seg_chunk.n; i++) { for (int i = 0; i < seg_chunk.n; i++) {
Segment seg = Segment_read(Segment_index(segs, i)); Segment seg = Segment_read(Segment_index(segs, i));
vec2 line_vec = seg.end - seg.start; vec2 line_vec = seg.end - seg.start;
for (uint k = 0; k < CHUNK; k++) {
vec2 dpos = xy + vec2(0.5, 0.5) - seg.start; vec2 dpos = xy + vec2(0.5, 0.5) - seg.start;
dpos.y += float(k * CHUNK_DY);
float t = clamp(dot(line_vec, dpos) / dot(line_vec, line_vec), 0.0, 1.0); float t = clamp(dot(line_vec, dpos) / dot(line_vec, line_vec), 0.0, 1.0);
df = min(df, length(line_vec * t - dpos)); df[k] = min(df[k], length(line_vec * t - dpos));
}
} }
seg_chunk_ref = seg_chunk.next; seg_chunk_ref = seg_chunk.next;
} while (seg_chunk_ref.offset != 0); } while (seg_chunk_ref.offset != 0);
fg_rgba = unpackUnorm4x8(stroke.rgba_color).wzyx; fg_rgba = unpackUnorm4x8(stroke.rgba_color).wzyx;
alpha = clamp(stroke.half_width + 0.5 - df, 0.0, 1.0); for (uint k = 0; k < CHUNK; k++) {
rgb = mix(rgb, fg_rgba.rgb, alpha * fg_rgba.a); float alpha = clamp(stroke.half_width + 0.5 - df[k], 0.0, 1.0);
rgb[k] = mix(rgb[k], fg_rgba.rgb, alpha * fg_rgba.a);
}
break; break;
case Cmd_Fill: case Cmd_Fill:
CmdFill fill = Cmd_Fill_read(cmd_ref); CmdFill fill = Cmd_Fill_read(cmd_ref);
// Probably better to store as float, but conversion is no doubt cheap. // Probably better to store as float, but conversion is no doubt cheap.
float area = float(fill.backdrop); float area[CHUNK];
for (uint k = 0; k < CHUNK; k++) area[k] = float(fill.backdrop);
SegChunkRef fill_seg_chunk_ref = fill.seg_ref; SegChunkRef fill_seg_chunk_ref = fill.seg_ref;
do { do {
SegChunk seg_chunk = SegChunk_read(fill_seg_chunk_ref); SegChunk seg_chunk = SegChunk_read(fill_seg_chunk_ref);
SegmentRef segs = seg_chunk.segs; SegmentRef segs = seg_chunk.segs;
for (int i = 0; i < seg_chunk.n; i++) { for (int i = 0; i < seg_chunk.n; i++) {
Segment seg = Segment_read(Segment_index(segs, i)); Segment seg = Segment_read(Segment_index(segs, i));
vec2 start = seg.start - xy; for (uint k = 0; k < CHUNK; k++) {
vec2 end = seg.end - xy; vec2 my_xy = vec2(xy.x, xy.y + float(k * CHUNK_DY));
vec2 start = seg.start - my_xy;
vec2 end = seg.end - my_xy;
vec2 window = clamp(vec2(start.y, end.y), 0.0, 1.0); vec2 window = clamp(vec2(start.y, end.y), 0.0, 1.0);
if (window.x != window.y) { if (window.x != window.y) {
vec2 t = (window - start.y) / (end.y - start.y); vec2 t = (window - start.y) / (end.y - start.y);
@ -86,20 +104,25 @@ void main() {
float c = max(b, 0.0); float c = max(b, 0.0);
float d = max(xmin, 0.0); float d = max(xmin, 0.0);
float a = (b + 0.5 * (d * d - c * c) - xmin) / (xmax - xmin); float a = (b + 0.5 * (d * d - c * c) - xmin) / (xmax - xmin);
area += a * (window.x - window.y); area[k] += a * (window.x - window.y);
}
area[k] += sign(end.x - start.x) * clamp(my_xy.y - seg.y_edge + 1.0, 0.0, 1.0);
} }
area += sign(end.x - start.x) * clamp(xy.y - seg.y_edge + 1.0, 0.0, 1.0);
} }
fill_seg_chunk_ref = seg_chunk.next; fill_seg_chunk_ref = seg_chunk.next;
} while (fill_seg_chunk_ref.offset != 0); } while (fill_seg_chunk_ref.offset != 0);
fg_rgba = unpackUnorm4x8(fill.rgba_color).wzyx; fg_rgba = unpackUnorm4x8(fill.rgba_color).wzyx;
alpha = min(abs(area), 1.0); for (uint k = 0; k < CHUNK; k++) {
rgb = mix(rgb, fg_rgba.rgb, alpha * fg_rgba.a); float alpha = min(abs(area[k]), 1.0);
rgb[k] = mix(rgb[k], fg_rgba.rgb, alpha * fg_rgba.a);
}
break; break;
case Cmd_Solid: case Cmd_Solid:
CmdSolid solid = Cmd_Solid_read(cmd_ref); CmdSolid solid = Cmd_Solid_read(cmd_ref);
fg_rgba = unpackUnorm4x8(solid.rgba_color).wzyx; fg_rgba = unpackUnorm4x8(solid.rgba_color).wzyx;
rgb = mix(rgb, fg_rgba.rgb, fg_rgba.a); for (uint k = 0; k < CHUNK; k++) {
rgb[k] = mix(rgb[k], fg_rgba.rgb, fg_rgba.a);
}
break; break;
case Cmd_Jump: case Cmd_Jump:
cmd_ref = CmdRef(Cmd_Jump_read(cmd_ref).new_ref); cmd_ref = CmdRef(Cmd_Jump_read(cmd_ref).new_ref);
@ -108,5 +131,8 @@ void main() {
cmd_ref.offset += Cmd_size; cmd_ref.offset += Cmd_size;
} }
imageStore(image, ivec2(xy_uint), vec4(rgb, 1.0)); // TODO: sRGB
for (uint i = 0; i < CHUNK; i++) {
imageStore(image, ivec2(xy_uint.x, xy_uint.y + CHUNK_DY * i), vec4(rgb[i], 1.0));
}
} }

Binary file not shown.