Boost backdrop parallelism for the prefix sums

This commit is contained in:
Ishi Tatsuyuki 2021-05-27 11:32:33 +09:00
parent 8b65942f65
commit c2772ceac7
2 changed files with 41 additions and 31 deletions

View file

@ -2,9 +2,10 @@
// Propagation of tile backdrop for filling. // Propagation of tile backdrop for filling.
// //
// Each thread reads one path element and calculates the number of spanned tiles // Each thread reads one path element and calculates the row and column counts of spanned tiles
// based on the bounding box. // based on the bounding box.
// In a further compaction step, the workgroup loops over the corresponding tile rows per element in parallel. // The row count then goes through a prefix sum to redistribute and load-balance the work across the workgroup.
// In the following step, the workgroup loops over the corresponding tile rows per element in parallel.
// For each row the per tile backdrop will be read, as calculated in the previous coarse path segment kernel, // For each row the per tile backdrop will be read, as calculated in the previous coarse path segment kernel,
// and propagated from the left to the right (prefix summed). // and propagated from the left to the right (prefix summed).
// //
@ -20,8 +21,13 @@
#define LG_BACKDROP_WG (7 + LG_WG_FACTOR) #define LG_BACKDROP_WG (7 + LG_WG_FACTOR)
#define BACKDROP_WG (1 << LG_BACKDROP_WG) #define BACKDROP_WG (1 << LG_BACKDROP_WG)
// Some paths (those covering a large area) can generate a lot of backdrop tiles; BACKDROP_DIST_FACTOR defines how much
// additional threads should we spawn for parallel row processing. The additional threads does not participate in the
// earlier stages (calculating the tile counts) but does work in the final prefix sum stage which has a lot more
// parallelism.
#define BACKDROP_DIST_FACTOR 4
layout(local_size_x = BACKDROP_WG, local_size_y = 1) in; layout(local_size_x = BACKDROP_WG, local_size_y = BACKDROP_DIST_FACTOR) in;
layout(set = 0, binding = 1) readonly buffer ConfigBuf { layout(set = 0, binding = 1) readonly buffer ConfigBuf {
Config conf; Config conf;
@ -35,54 +41,58 @@ shared Alloc sh_row_alloc[BACKDROP_WG];
shared uint sh_row_width[BACKDROP_WG]; shared uint sh_row_width[BACKDROP_WG];
void main() { void main() {
uint th_ix = gl_LocalInvocationID.x; uint th_ix = gl_LocalInvocationIndex;
uint element_ix = gl_GlobalInvocationID.x; uint element_ix = gl_GlobalInvocationID.x;
AnnotatedRef ref = AnnotatedRef(conf.anno_alloc.offset + element_ix * Annotated_size); AnnotatedRef ref = AnnotatedRef(conf.anno_alloc.offset + element_ix * Annotated_size);
// Work assignment: 1 thread : 1 path element // Work assignment: 1 thread : 1 path element
uint row_count = 0; uint row_count = 0;
bool mem_ok = mem_error == NO_ERROR; bool mem_ok = mem_error == NO_ERROR;
if (element_ix < conf.n_elements) { if (gl_LocalInvocationID.y == 0) {
AnnotatedTag tag = Annotated_tag(conf.anno_alloc, ref); if (element_ix < conf.n_elements) {
switch (tag.tag) { AnnotatedTag tag = Annotated_tag(conf.anno_alloc, ref);
case Annotated_Image: switch (tag.tag) {
case Annotated_BeginClip: case Annotated_Image:
case Annotated_Color: case Annotated_BeginClip:
if (fill_mode_from_flags(tag.flags) != MODE_NONZERO) { case Annotated_Color:
break; if (fill_mode_from_flags(tag.flags) != MODE_NONZERO) {
break;
}
// Fall through.
PathRef path_ref = PathRef(conf.tile_alloc.offset + element_ix * Path_size);
Path path = Path_read(conf.tile_alloc, path_ref);
sh_row_width[th_ix] = path.bbox.z - path.bbox.x;
row_count = path.bbox.w - path.bbox.y;
// Paths that don't cross tile top edges don't have backdrops.
// Don't apply the optimization to paths that may cross the y = 0
// top edge, but clipped to 1 row.
if (row_count == 1 && path.bbox.y > 0) {
// Note: this can probably be expanded to width = 2 as
// long as it doesn't cross the left edge.
row_count = 0;
}
Alloc path_alloc = new_alloc(path.tiles.offset, (path.bbox.z - path.bbox.x) * (path.bbox.w - path.bbox.y) * Tile_size, mem_ok);
sh_row_alloc[th_ix] = path_alloc;
} }
// Fall through.
PathRef path_ref = PathRef(conf.tile_alloc.offset + element_ix * Path_size);
Path path = Path_read(conf.tile_alloc, path_ref);
sh_row_width[th_ix] = path.bbox.z - path.bbox.x;
row_count = path.bbox.w - path.bbox.y;
// Paths that don't cross tile top edges don't have backdrops.
// Don't apply the optimization to paths that may cross the y = 0
// top edge, but clipped to 1 row.
if (row_count == 1 && path.bbox.y > 0) {
// Note: this can probably be expanded to width = 2 as
// long as it doesn't cross the left edge.
row_count = 0;
}
Alloc path_alloc = new_alloc(path.tiles.offset, (path.bbox.z - path.bbox.x) * (path.bbox.w - path.bbox.y) * Tile_size, mem_ok);
sh_row_alloc[th_ix] = path_alloc;
} }
sh_row_count[th_ix] = row_count;
} }
sh_row_count[th_ix] = row_count;
// Prefix sum of sh_row_count // Prefix sum of sh_row_count
for (uint i = 0; i < LG_BACKDROP_WG; i++) { for (uint i = 0; i < LG_BACKDROP_WG; i++) {
barrier(); barrier();
if (th_ix >= (1 << i)) { if (gl_LocalInvocationID.y == 0 && th_ix >= (1 << i)) {
row_count += sh_row_count[th_ix - (1 << i)]; row_count += sh_row_count[th_ix - (1 << i)];
} }
barrier(); barrier();
sh_row_count[th_ix] = row_count; if (gl_LocalInvocationID.y == 0) {
sh_row_count[th_ix] = row_count;
}
} }
barrier(); barrier();
// Work assignment: 1 thread : 1 path element row // Work assignment: 1 thread : 1 path element row
uint total_rows = sh_row_count[BACKDROP_WG - 1]; uint total_rows = sh_row_count[BACKDROP_WG - 1];
for (uint row = th_ix; row < total_rows; row += BACKDROP_WG) { for (uint row = th_ix; row < total_rows; row += BACKDROP_WG * BACKDROP_DIST_FACTOR) {
// Binary search to find element // Binary search to find element
uint el_ix = 0; uint el_ix = 0;
for (uint i = 0; i < LG_BACKDROP_WG; i++) { for (uint i = 0; i < LG_BACKDROP_WG; i++) {

Binary file not shown.