Starting coarse rasterizer

Working down the pipeline.

WIP
This commit is contained in:
Raph Levien 2020-05-13 15:35:19 -07:00
parent 9a0b17ff5b
commit cc89d0e285
8 changed files with 196 additions and 24 deletions

View file

@ -41,7 +41,7 @@ fn main() -> Result<(), Error> {
let fence = device.create_fence(false)?; let fence = device.create_fence(false)?;
let mut cmd_buf = device.create_cmd_buf()?; let mut cmd_buf = device.create_cmd_buf()?;
let query_pool = device.create_query_pool(3)?; let query_pool = device.create_query_pool(4)?;
let mut ctx = PietGpuRenderContext::new(); let mut ctx = PietGpuRenderContext::new();
render_scene(&mut ctx); render_scene(&mut ctx);
@ -61,11 +61,16 @@ fn main() -> Result<(), Error> {
let ts = device.reap_query_pool(&query_pool).unwrap(); let ts = device.reap_query_pool(&query_pool).unwrap();
println!("Element kernel time: {:.3}ms", ts[0] * 1e3); println!("Element kernel time: {:.3}ms", ts[0] * 1e3);
println!("Binning kernel time: {:.3}ms", (ts[1] - ts[0]) * 1e3); println!("Binning kernel time: {:.3}ms", (ts[1] - ts[0]) * 1e3);
println!("Coarse kernel time: {:.3}ms", (ts[2] - ts[1]) * 1e3);
/* /*
let mut data: Vec<u32> = Default::default(); let mut data: Vec<u32> = Default::default();
device.read_buffer(&renderer.bin_buf, &mut data).unwrap(); device.read_buffer(&renderer.bin_buf, &mut data).unwrap();
piet_gpu::dump_k1_data(&data); piet_gpu::dump_k1_data(&data);
let mut data: Vec<u32> = Default::default();
device.read_buffer(&renderer.ptcl_buf, &mut data).unwrap();
piet_gpu::dump_k1_data(&data);
*/ */
let mut img_data: Vec<u8> = Default::default(); let mut img_data: Vec<u8> = Default::default();

View file

@ -3,20 +3,7 @@
#version 450 #version 450
#extension GL_GOOGLE_include_directive : enable #extension GL_GOOGLE_include_directive : enable
#define N_ROWS 4 #include "setup.h"
#define WG_SIZE 32
#define LG_WG_SIZE 5
#define TILE_SIZE (WG_SIZE * N_ROWS)
// TODO: move these to setup file
#define N_TILE_X 16
#define N_TILE_Y 16
#define N_TILE (N_TILE_X * N_TILE_Y)
#define N_SLICE (N_TILE / 32)
#define N_WG 16 // Number of workgroups, should be 1 per SM
#define BIN_INITIAL_ALLOC 64
#define BIN_ALLOC 256
layout(local_size_x = N_TILE, local_size_y = 1) in; layout(local_size_x = N_TILE, local_size_y = 1) in;
@ -37,7 +24,6 @@ layout(set = 0, binding = 2) buffer BinsBuf {
#include "annotated.h" #include "annotated.h"
#include "bins.h" #include "bins.h"
#include "setup.h"
// scale factors useful for converting coordinates to bins // scale factors useful for converting coordinates to bins
#define SX (1.0 / float(N_TILE_X * TILE_WIDTH_PX)) #define SX (1.0 / float(N_TILE_X * TILE_WIDTH_PX))
@ -135,9 +121,7 @@ void main() {
uint next_chunk = chunk_ref.offset + BinChunk_size + chunk_n * 4; uint next_chunk = chunk_ref.offset + BinChunk_size + chunk_n * 4;
if (next_chunk + BinChunk_size + min(24, element_count * 4) > wr_limit) { if (next_chunk + BinChunk_size + min(24, element_count * 4) > wr_limit) {
uint alloc_amount = max(BIN_ALLOC, BinChunk_size + element_count * 4); uint alloc_amount = max(BIN_ALLOC, BinChunk_size + element_count * 4);
if (alloc_amount - BIN_ALLOC < 64) { // could try to reduce fragmentation if BIN_ALLOC is only a bit above needed
alloc_amount = BIN_ALLOC;
}
next_chunk = atomicAdd(alloc, alloc_amount); next_chunk = atomicAdd(alloc, alloc_amount);
wr_limit = next_chunk + alloc_amount; wr_limit = next_chunk + alloc_amount;
} }
@ -149,9 +133,6 @@ void main() {
chunk_end = wr_limit; chunk_end = wr_limit;
chunk_n = (wr_limit - instance_ref.offset) / 4; chunk_n = (wr_limit - instance_ref.offset) / 4;
uint alloc_amount = max(BIN_ALLOC, BinChunk_size + (element_count - chunk_n) * 4); uint alloc_amount = max(BIN_ALLOC, BinChunk_size + (element_count - chunk_n) * 4);
if (alloc_amount - BIN_ALLOC < 64) {
alloc_amount = BIN_ALLOC;
}
chunk_new_start = atomicAdd(alloc, alloc_amount); chunk_new_start = atomicAdd(alloc, alloc_amount);
wr_limit = chunk_new_start + alloc_amount; wr_limit = chunk_new_start + alloc_amount;
BinChunk_write(chunk_ref, BinChunk(chunk_n, BinChunkRef(chunk_new_start))); BinChunk_write(chunk_ref, BinChunk(chunk_n, BinChunkRef(chunk_new_start)));

Binary file not shown.

View file

@ -22,4 +22,6 @@ build kernel4.spv: glsl kernel4.comp | ptcl.h segment.h fill_seg.h setup.h
build elements.spv: glsl elements.comp | scene.h state.h annotated.h build elements.spv: glsl elements.comp | scene.h state.h annotated.h
build binning.spv: glsl binning.comp | annotated.h setup.h build binning.spv: glsl binning.comp | annotated.h bins.h setup.h
build coarse.spv: glsl coarse.comp | annotated.h bins.h ptcl.h setup.h

129
piet-gpu/shader/coarse.comp Normal file
View file

@ -0,0 +1,129 @@
// The coarse rasterizer stage of the pipeline.
#version 450
#extension GL_GOOGLE_include_directive : enable
#include "setup.h"
layout(local_size_x = N_TILE, local_size_y = 1) in;
layout(set = 0, binding = 0) buffer AnnotatedBuf {
uint[] annotated;
};
layout(set = 0, binding = 1) buffer BinsBuf {
uint[] bins;
};
layout(set = 0, binding = 2) buffer AllocBuf {
uint alloc;
};
layout(set = 0, binding = 3) buffer PtclBuf {
uint[] ptcl;
};
#include "annotated.h"
#include "bins.h"
#include "ptcl.h"
#define N_RINGBUF 512
shared uint sh_elements[N_RINGBUF];
shared uint sh_chunk[N_WG];
shared uint sh_chunk_next[N_WG];
shared uint sh_chunk_n[N_WG];
shared uint sh_min_buf;
// Some of these are kept in shared memory to ease register
// pressure, but it could go either way.
shared uint sh_first_el[N_WG];
shared uint sh_selected_n;
shared uint sh_elements_ref;
shared uint sh_bitmaps[N_SLICE][N_TILE];
void main() {
// Could use either linear or 2d layouts for both dispatch and
// invocations within the workgroup. We'll use variables to abstract.
uint bin_ix = N_TILE_X * gl_WorkGroupID.y + gl_WorkGroupID.x;
uint th_ix = gl_LocalInvocationID.x;
uint wr_ix = 0;
uint rd_ix = 0;
uint first_el;
if (th_ix < N_WG) {
uint start_chunk = (bin_ix * N_WG + th_ix) * BIN_INITIAL_ALLOC;
sh_chunk[th_ix] = start_chunk;
BinChunk chunk = BinChunk_read(BinChunkRef(start_chunk));
sh_chunk_n[th_ix] = chunk.n;
sh_chunk_next[th_ix] = chunk.next.offset;
sh_first_el[th_ix] = chunk.n > 0 ?
BinInstance_read(BinInstanceRef(start_chunk + BinChunk_size)).element_ix : ~0;
}
uint probe = 0; // for debugging
do {
for (uint i = 0; i < N_SLICE; i++) {
sh_bitmaps[i][th_ix] = 0;
}
while (wr_ix - rd_ix <= N_TILE) {
// Choose segment with least element.
uint my_min;
if (th_ix < N_WG) {
if (th_ix == 0) {
sh_selected_n = 0;
sh_min_buf = ~1;
}
}
barrier();
// Tempting to do this with subgroups, but atomic should be good enough.
my_min = sh_first_el[th_ix];
if (th_ix < N_WG) {
atomicMin(sh_min_buf, my_min);
}
barrier();
if (th_ix < N_WG) {
if (sh_first_el[th_ix] == sh_min_buf) {
sh_elements_ref = sh_chunk[th_ix] + BinChunk_size;
uint selected_n = sh_chunk_n[th_ix];
sh_selected_n = selected_n;
uint next_chunk = sh_chunk_next[th_ix];
if (next_chunk == 0) {
sh_first_el[th_ix] = ~0;
} else {
sh_chunk[th_ix] = next_chunk;
BinChunk chunk = BinChunk_read(BinChunkRef(next_chunk));
sh_chunk_n[th_ix] = chunk.n;
sh_chunk_next[th_ix] = chunk.next.offset;
sh_first_el[th_ix] = BinInstance_read(
BinInstanceRef(next_chunk + BinChunk_size)).element_ix;
}
}
}
barrier();
uint chunk_n = sh_selected_n;
if (chunk_n == 0) {
// All chunks consumed
break;
}
BinInstanceRef inst_ref = BinInstanceRef(sh_elements_ref);
if (th_ix < chunk_n) {
uint el = BinInstance_read(BinInstance_index(inst_ref, th_ix)).element_ix;
sh_elements[(wr_ix + th_ix) % N_RINGBUF] = el;
probe = el;
}
wr_ix += chunk_n;
}
// We've done the merge and filled the buffer.
uint tag = Annotated_Nop;
AnnotatedRef ref;
if (th_ix + rd_ix < wr_ix) {
uint element_ix = (sh_elements[rd_ix] + th_ix) % N_RINGBUF;
ref = AnnotatedRef(element_ix * Annotated_size);
tag = Annotated_tag(ref);
probe = tag;
}
rd_ix += N_TILE;
} while (wr_ix > rd_ix);
ptcl[bin_ix * N_TILE + th_ix] = probe;
}

BIN
piet-gpu/shader/coarse.spv Normal file

Binary file not shown.

View file

@ -39,4 +39,21 @@
// Maximum number of segments in a SegChunk // Maximum number of segments in a SegChunk
#define SEG_CHUNK_N 32 #define SEG_CHUNK_N 32
#define SEG_CHUNK_ALLOC 512 #define SEG_CHUNK_ALLOC 512
// Stuff for new algorithm follows; some of the above should get
// deleted.
// These should probably be renamed and/or reworked. In the binning
// kernel, they represent the number of bins. Also, the workgroup size
// of that kernel is equal to the number of bins, but should probably
// be more flexible (it's 512 in the K&L paper).
#define N_TILE_X 16
#define N_TILE_Y 16
#define N_TILE (N_TILE_X * N_TILE_Y)
#define N_SLICE (N_TILE / 32)
// Number of workgroups for binning kernel
#define N_WG 16
#define BIN_INITIAL_ALLOC 64
#define BIN_ALLOC 256

View file

@ -117,6 +117,7 @@ pub struct Renderer<D: Device> {
pub state_buf: D::Buffer, pub state_buf: D::Buffer,
pub anno_buf: D::Buffer, pub anno_buf: D::Buffer,
pub bin_buf: D::Buffer, pub bin_buf: D::Buffer,
pub ptcl_buf: D::Buffer,
el_pipeline: D::Pipeline, el_pipeline: D::Pipeline,
el_ds: D::DescriptorSet, el_ds: D::DescriptorSet,
@ -127,6 +128,12 @@ pub struct Renderer<D: Device> {
bin_alloc_buf_host: D::Buffer, bin_alloc_buf_host: D::Buffer,
bin_alloc_buf_dev: D::Buffer, bin_alloc_buf_dev: D::Buffer,
coarse_pipeline: D::Pipeline,
coarse_ds: D::DescriptorSet,
coarse_alloc_buf_host: D::Buffer,
coarse_alloc_buf_dev: D::Buffer,
/* /*
k1_alloc_buf_host: D::Buffer, k1_alloc_buf_host: D::Buffer,
k1_alloc_buf_dev: D::Buffer, k1_alloc_buf_dev: D::Buffer,
@ -172,6 +179,7 @@ impl<D: Device> Renderer<D> {
let state_buf = device.create_buffer(64 * 1024 * 1024, dev)?; let state_buf = device.create_buffer(64 * 1024 * 1024, dev)?;
let anno_buf = device.create_buffer(64 * 1024 * 1024, dev)?; let anno_buf = device.create_buffer(64 * 1024 * 1024, dev)?;
let bin_buf = device.create_buffer(64 * 1024 * 1024, dev)?; let bin_buf = device.create_buffer(64 * 1024 * 1024, dev)?;
let ptcl_buf = device.create_buffer(48 * 1024 * 1024, dev)?;
let image_dev = device.create_image2d(WIDTH as u32, HEIGHT as u32, dev)?; let image_dev = device.create_image2d(WIDTH as u32, HEIGHT as u32, dev)?;
let el_code = include_bytes!("../shader/elements.spv"); let el_code = include_bytes!("../shader/elements.spv");
@ -202,6 +210,23 @@ impl<D: Device> Renderer<D> {
&[], &[],
)?; )?;
let coarse_alloc_buf_host = device.create_buffer(4, host)?;
let coarse_alloc_buf_dev = device.create_buffer(4, dev)?;
let coarse_alloc_start = 256 * 64 * N_WG;
device
.write_buffer(&coarse_alloc_buf_host, &[
coarse_alloc_start,
])
?;
let coarse_code = include_bytes!("../shader/coarse.spv");
let coarse_pipeline = device.create_simple_compute_pipeline(coarse_code, 4, 0)?;
let coarse_ds = device.create_descriptor_set(
&coarse_pipeline,
&[&anno_buf, &bin_buf, &coarse_alloc_buf_dev, &ptcl_buf],
&[],
)?;
/* /*
let tilegroup_buf = device.create_buffer(4 * 1024 * 1024, dev)?; let tilegroup_buf = device.create_buffer(4 * 1024 * 1024, dev)?;
let ptcl_buf = device.create_buffer(48 * 1024 * 1024, dev)?; let ptcl_buf = device.create_buffer(48 * 1024 * 1024, dev)?;
@ -285,11 +310,16 @@ impl<D: Device> Renderer<D> {
el_ds, el_ds,
bin_pipeline, bin_pipeline,
bin_ds, bin_ds,
coarse_pipeline,
coarse_ds,
state_buf, state_buf,
anno_buf, anno_buf,
bin_buf, bin_buf,
ptcl_buf,
bin_alloc_buf_host, bin_alloc_buf_host,
bin_alloc_buf_dev, bin_alloc_buf_dev,
coarse_alloc_buf_host,
coarse_alloc_buf_dev,
n_elements, n_elements,
}) })
} }
@ -297,6 +327,7 @@ impl<D: Device> Renderer<D> {
pub unsafe fn record(&self, cmd_buf: &mut impl CmdBuf<D>, query_pool: &D::QueryPool) { pub unsafe fn record(&self, cmd_buf: &mut impl CmdBuf<D>, query_pool: &D::QueryPool) {
cmd_buf.copy_buffer(&self.scene_buf, &self.scene_dev); cmd_buf.copy_buffer(&self.scene_buf, &self.scene_dev);
cmd_buf.copy_buffer(&self.bin_alloc_buf_host, &self.bin_alloc_buf_dev); cmd_buf.copy_buffer(&self.bin_alloc_buf_host, &self.bin_alloc_buf_dev);
cmd_buf.copy_buffer(&self.coarse_alloc_buf_host, &self.coarse_alloc_buf_dev);
cmd_buf.memory_barrier(); cmd_buf.memory_barrier();
cmd_buf.image_barrier( cmd_buf.image_barrier(
&self.image_dev, &self.image_dev,
@ -319,6 +350,13 @@ impl<D: Device> Renderer<D> {
); );
cmd_buf.write_timestamp(&query_pool, 2); cmd_buf.write_timestamp(&query_pool, 2);
cmd_buf.memory_barrier(); cmd_buf.memory_barrier();
cmd_buf.dispatch(
&self.coarse_pipeline,
&self.coarse_ds,
(WIDTH as u32 / 256, HEIGHT as u32 / 256, 1),
);
cmd_buf.write_timestamp(&query_pool, 3);
cmd_buf.memory_barrier();
cmd_buf.image_barrier(&self.image_dev, ImageLayout::General, ImageLayout::BlitSrc); cmd_buf.image_barrier(&self.image_dev, ImageLayout::General, ImageLayout::BlitSrc);
} }
} }