Merge pull request #102 from linebender/api_reorg

API reorg
This commit is contained in:
Raph Levien 2021-05-31 20:37:50 -07:00 committed by GitHub
commit e2b14ea4be
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
11 changed files with 398 additions and 224 deletions

View file

@ -1,13 +1,11 @@
use piet_gpu_hal::hub;
use piet_gpu_hal::include_shader;
use piet_gpu_hal::mux::Instance;
use piet_gpu_hal::BufferUsage;
use piet_gpu_hal::{BufferUsage, Instance, Session};
fn main() {
let (instance, _) = Instance::new(None).unwrap();
unsafe {
let device = instance.device(None).unwrap();
let session = hub::Session::new(device);
let session = Session::new(device);
let usage = BufferUsage::MAP_READ | BufferUsage::STORAGE;
let src = (0..256).map(|x| x + 1).collect::<Vec<u32>>();
let buffer = session.create_buffer_init(&src, usage).unwrap();

View file

@ -1,102 +0,0 @@
//! An example to exercise the dx12 backend, while it's being developed.
//! This will probably go away when it's fully implemented and we can
//! just use the hub.
use piet_gpu_hal::backend::{CmdBuf, Device};
use piet_gpu_hal::{dx12, BufferUsage, Error};
const SHADER_CODE: &str = r#"RWByteAddressBuffer _53 : register(u0, space0);
RWTexture2D<float4> textureOut : register(u1);
static uint3 gl_GlobalInvocationID;
struct SPIRV_Cross_Input
{
uint3 gl_GlobalInvocationID : SV_DispatchThreadID;
};
uint collatz_iterations(inout uint n)
{
uint i = 0u;
while (n != 1u)
{
if ((n & 1u) == 0u)
{
n /= 2u;
}
else
{
n = (3u * n) + 1u;
}
i++;
}
return i;
}
void comp_main()
{
uint index = gl_GlobalInvocationID.x;
uint param = _53.Load(index * 4 + 0);
uint _61 = collatz_iterations(param);
_53.Store(index * 4 + 0, _61);
textureOut[uint2(index, 0)] = float4(1.0, 0.0, 0.0, 1.0);
}
[numthreads(256, 1, 1)]
void main(SPIRV_Cross_Input stage_input)
{
gl_GlobalInvocationID = stage_input.gl_GlobalInvocationID;
comp_main();
}
"#;
fn toy() -> Result<(), Error> {
let (instance, _surface) = dx12::Dx12Instance::new(None)?;
let device = instance.device(None)?;
let buf = device.create_buffer(
1024,
BufferUsage::MAP_READ
| BufferUsage::MAP_WRITE
| BufferUsage::COPY_SRC
| BufferUsage::COPY_DST,
)?;
let dev_buf = device.create_buffer(
1024,
BufferUsage::STORAGE | BufferUsage::COPY_SRC | BufferUsage::COPY_DST,
)?;
let img_readback_buf =
device.create_buffer(1024, BufferUsage::MAP_READ | BufferUsage::COPY_DST)?;
let data: Vec<u32> = (1..257).collect();
let query_pool = device.create_query_pool(2)?;
unsafe {
let img = device.create_image2d(256, 1)?;
device.write_buffer(&buf, data.as_ptr() as *const u8, 0, 1024)?;
let pipeline = device.create_simple_compute_pipeline(SHADER_CODE, 1, 1)?;
let ds = device.create_descriptor_set(&pipeline, &[&dev_buf], &[&img])?;
let mut cmd_buf = device.create_cmd_buf()?;
let mut fence = device.create_fence(false)?;
cmd_buf.begin();
cmd_buf.copy_buffer(&buf, &dev_buf);
cmd_buf.memory_barrier();
cmd_buf.write_timestamp(&query_pool, 0);
cmd_buf.dispatch(&pipeline, &ds, (1, 1, 1), (256, 1, 1));
cmd_buf.write_timestamp(&query_pool, 1);
cmd_buf.memory_barrier();
cmd_buf.copy_buffer(&dev_buf, &buf);
cmd_buf.copy_image_to_buffer(&img, &img_readback_buf);
cmd_buf.finish_timestamps(&query_pool);
cmd_buf.host_barrier();
cmd_buf.finish();
device.run_cmd_bufs(&[&cmd_buf], &[], &[], Some(&mut fence))?;
device.wait_and_reset(vec![&mut fence])?;
let mut readback: Vec<u32> = vec![0u32; 256];
device.read_buffer(&buf, readback.as_mut_ptr() as *mut u8, 0, 1024)?;
println!("{:?}", readback);
println!("{:?}", device.fetch_query_pool(&query_pool));
}
Ok(())
}
fn main() {
toy().unwrap();
}

View file

@ -13,10 +13,18 @@ use smallvec::SmallVec;
use crate::mux;
use crate::{BufferUsage, Error, GpuInfo, SamplerParams};
use crate::{BufferUsage, Error, GpuInfo, ImageLayout, SamplerParams};
pub use crate::mux::{DescriptorSet, Fence, Pipeline, QueryPool, Sampler, Semaphore, ShaderCode};
/// A session of GPU operations.
///
/// This abstraction is generally called a "device" in other APIs, but that
/// term is very overloaded. It is the point to access resource creation,
/// work submission, and related concerns.
///
/// Most of the methods are `&self`, indicating that they can be called from
/// multiple threads.
#[derive(Clone)]
pub struct Session(Arc<SessionInner>);
@ -30,6 +38,10 @@ struct SessionInner {
gpu_info: GpuInfo,
}
/// A command buffer.
///
/// Actual work done by the GPU is encoded into a command buffer and then
/// submitted to the session in a batch.
pub struct CmdBuf {
cmd_buf: mux::CmdBuf,
fence: Fence,
@ -37,7 +49,13 @@ pub struct CmdBuf {
session: Weak<SessionInner>,
}
// Maybe "pending" is a better name?
/// A command buffer in submitted state.
///
/// Submission of a command buffer is asynchronous, meaning that the submit
/// method returns immediately. The work done in the command buffer cannot
/// be accessed (for example, readback from buffers written) until the the
/// submission is complete. The main purpose of this structure is to wait on
/// that completion.
pub struct SubmittedCmdBuf(Option<SubmittedCmdBufInner>, Weak<SessionInner>);
struct SubmittedCmdBufInner {
@ -49,6 +67,9 @@ struct SubmittedCmdBufInner {
staging_cmd_buf: Option<CmdBuf>,
}
/// An image or texture.
///
/// At the moment, images are limited to 2D.
#[derive(Clone)]
pub struct Image(Arc<ImageInner>);
@ -57,6 +78,11 @@ struct ImageInner {
session: Weak<SessionInner>,
}
/// A buffer.
///
/// A buffer is a segment of memory that can be accessed by the GPU, and
/// in some cases also by the host (if the appropriate [`BufferUsage`] flags
/// are set).
#[derive(Clone)]
pub struct Buffer(Arc<BufferInner>);
@ -65,8 +91,15 @@ struct BufferInner {
session: Weak<SessionInner>,
}
/// A builder for creating pipelines.
///
/// Configure the signature (buffers and images accessed) for a pipeline,
/// which is essentially compiled shader code, ready to be dispatched.
pub struct PipelineBuilder(mux::PipelineBuilder);
/// A builder for creating descriptor sets.
///
/// Add bindings to the descriptor set before dispatching a shader.
pub struct DescriptorSetBuilder(mux::DescriptorSetBuilder);
/// Data types that can be stored in a GPU buffer.
@ -90,6 +123,7 @@ pub enum RetainResource {
}
impl Session {
/// Create a new session, choosing the best backend.
pub fn new(device: mux::Device) -> Session {
let gpu_info = device.query_gpu_info();
Session(Arc::new(SessionInner {
@ -101,6 +135,14 @@ impl Session {
}))
}
/// Create a new command buffer.
///
/// The caller is responsible for inserting pipeline barriers and other
/// transitions. If one dispatch writes a buffer (or image), and another
/// reads it, a barrier must intervene. No such barrier is needed for
/// uploads by the host before command submission, but a host barrier is
/// needed if the host will do readback of any buffers written by the
/// command list.
pub fn cmd_buf(&self) -> Result<CmdBuf, Error> {
self.poll_cleanup();
let (cmd_buf, fence) = if let Some(cf) = self.0.cmd_buf_pool.lock().unwrap().pop() {
@ -141,6 +183,12 @@ impl Session {
}
}
/// Run a command buffer.
///
/// The semaphores are for swapchain presentation and can be empty for
/// compute-only work. When provided, work is synchronized to start only
/// when the wait semaphores are signaled, and when work is complete, the
/// signal semaphores are signaled.
pub unsafe fn run_cmd_buf(
&self,
mut cmd_buf: CmdBuf,
@ -175,6 +223,13 @@ impl Session {
))
}
/// Create a buffer.
///
/// The `usage` flags must be specified to indicate what the buffer will
/// be used for. In general, when no `MAP_` flags are specified, the buffer
/// will be created in device memory, which means they are not host
/// accessible, but GPU access is much higher performance (at least on
/// discrete GPUs).
pub fn create_buffer(&self, size: u64, usage: BufferUsage) -> Result<Buffer, Error> {
let buffer = self.0.device.create_buffer(size, usage)?;
Ok(Buffer(Arc::new(BufferInner {
@ -184,6 +239,10 @@ impl Session {
}
/// Create a buffer with initialized data.
///
/// This method takes care of creating a staging buffer if needed, so
/// it is not necessary to specify `MAP_WRITE` usage, unless of course
/// the buffer will subsequently be written by the host.
pub fn create_buffer_init(
&self,
contents: &[impl PlainData],
@ -226,7 +285,7 @@ impl Session {
}
let staging_cmd_buf = staging_cmd_buf.as_mut().unwrap();
// This will ensure the staging buffer is deallocated.
staging_cmd_buf.copy_buffer(create_buf.mux_buffer(), buf.mux_buffer());
staging_cmd_buf.copy_buffer(&create_buf, &buf);
staging_cmd_buf.add_resource(create_buf);
Ok(buf)
} else {
@ -234,6 +293,10 @@ impl Session {
}
}
/// Create an image.
///
/// Currently this creates only a 2D image in RGBA8 format, with usage
/// so that it can be accessed by shaders and used for transfer.
pub unsafe fn create_image2d(&self, width: u32, height: u32) -> Result<Image, Error> {
let image = self.0.device.create_image2d(width, height)?;
Ok(Image(Arc::new(ImageInner {
@ -242,13 +305,18 @@ impl Session {
})))
}
/// Create a semaphore.
///
/// These "semaphores" are only for swapchain integration and may be
/// stubs on back-ends that don't require semaphore synchronization.
pub unsafe fn create_semaphore(&self) -> Result<Semaphore, Error> {
self.0.device.create_semaphore()
}
/// This creates a pipeline that operates on some buffers and images.
///
/// The descriptor set layout is just some number of storage buffers and storage images (this might change).
/// The descriptor set layout is just some number of storage buffers
/// and storage images (this might change).
pub unsafe fn create_simple_compute_pipeline<'a>(
&self,
code: ShaderCode<'a>,
@ -259,6 +327,14 @@ impl Session {
.create_compute_pipeline(self, code)
}
/// Start building a pipeline.
///
/// A pipeline is essentially a compiled shader, with more specific
/// details about what resources may be bound to it.
pub unsafe fn pipeline_builder(&self) -> PipelineBuilder {
PipelineBuilder(self.0.device.pipeline_builder())
}
/// Create a descriptor set for a simple pipeline that just references buffers.
pub unsafe fn create_simple_descriptor_set<'a>(
&self,
@ -270,28 +346,37 @@ impl Session {
.build(self, pipeline)
}
/// Start building a descriptor set.
///
/// A descriptor set is a binding of actual resources (buffers and
/// images) to slots as specified in the pipeline.
pub unsafe fn descriptor_set_builder(&self) -> DescriptorSetBuilder {
DescriptorSetBuilder(self.0.device.descriptor_set_builder())
}
/// Create a query pool for timestamp queries.
pub fn create_query_pool(&self, n_queries: u32) -> Result<QueryPool, Error> {
self.0.device.create_query_pool(n_queries)
}
/// Fetch the contents of the query pool.
///
/// This should be called after waiting on the command buffer that wrote the
/// timer queries.
pub unsafe fn fetch_query_pool(&self, pool: &QueryPool) -> Result<Vec<f64>, Error> {
self.0.device.fetch_query_pool(pool)
}
pub unsafe fn pipeline_builder(&self) -> PipelineBuilder {
PipelineBuilder(self.0.device.pipeline_builder())
}
pub unsafe fn descriptor_set_builder(&self) -> DescriptorSetBuilder {
DescriptorSetBuilder(self.0.device.descriptor_set_builder())
}
#[doc(hidden)]
/// Create a sampler.
///
/// Noy yet implemented.
pub unsafe fn create_sampler(&self, params: SamplerParams) -> Result<Sampler, Error> {
todo!()
//self.0.device.create_sampler(params)
}
/// Query the GPU info.
pub fn gpu_info(&self) -> &GpuInfo {
&self.0.gpu_info
}
@ -303,6 +388,149 @@ impl Session {
}
impl CmdBuf {
/// Begin recording into a command buffer.
///
/// Always call this before encoding any actual work.
///
/// Discussion question: can this be subsumed?
pub unsafe fn begin(&mut self) {
self.cmd_buf.begin();
}
/// Finish recording into a command buffer.
///
/// Always call this as the last method before submitting the command
/// buffer.
pub unsafe fn finish(&mut self) {
self.cmd_buf.finish();
}
/// Dispatch a compute shader.
///
/// Request a compute shader to be run, using the pipeline to specify the
/// code, and the descriptor set to address the resources read and written.
///
/// Both the workgroup count (number of workgroups) and the workgroup size
/// (number of threads in a workgroup) must be specified here, though not
/// all back-ends require the latter info.
pub unsafe fn dispatch(
&mut self,
pipeline: &Pipeline,
descriptor_set: &DescriptorSet,
workgroup_count: (u32, u32, u32),
workgroup_size: (u32, u32, u32),
) {
self.cmd_buf
.dispatch(pipeline, descriptor_set, workgroup_count, workgroup_size);
}
/// Insert an execution and memory barrier.
///
/// Compute kernels (and other actions) after this barrier may read from buffers
/// that were written before this barrier.
pub unsafe fn memory_barrier(&mut self) {
self.cmd_buf.memory_barrier();
}
/// Insert a barrier for host access to buffers.
///
/// The host may read buffers written before this barrier, after the fence for
/// the command buffer is signaled.
///
/// See http://themaister.net/blog/2019/08/14/yet-another-blog-explaining-vulkan-synchronization/
/// ("Host memory reads") for an explanation of this barrier.
pub unsafe fn host_barrier(&mut self) {
self.cmd_buf.memory_barrier();
}
/// Insert an image barrier, transitioning image layout.
///
/// When an image is written by one command and then read by another, an image
/// barrier must separate the uses. Also, the image layout must match the use
/// of the image.
///
/// Additionally, when writing to an image for the first time, it must be
/// transitioned from an unknown layout to specify the layout.
pub unsafe fn image_barrier(
&mut self,
image: &Image,
src_layout: ImageLayout,
dst_layout: ImageLayout,
) {
self.cmd_buf
.image_barrier(image.mux_image(), src_layout, dst_layout);
}
/// Clear the buffer.
///
/// When the size is not specified, it clears the whole buffer.
pub unsafe fn clear_buffer(&mut self, buffer: &Buffer, size: Option<u64>) {
self.cmd_buf.clear_buffer(buffer.mux_buffer(), size);
}
/// Copy one buffer to another.
///
/// When the buffers differ in size, the minimum of the sizes is used.
pub unsafe fn copy_buffer(&mut self, src: &Buffer, dst: &Buffer) {
self.cmd_buf.copy_buffer(src.mux_buffer(), dst.mux_buffer());
}
/// Copy an image to a buffer.
///
/// The size of the image and buffer must match.
pub unsafe fn copy_image_to_buffer(&mut self, src: &Image, dst: &Buffer) {
self.cmd_buf
.copy_image_to_buffer(src.mux_image(), dst.mux_buffer());
// TODO: change the backend signature to allow failure, as in "not
// implemented" or "unaligned", and fall back to compute shader
// submission.
}
/// Copy a buffer to an image.
///
/// The size of the image and buffer must match.
pub unsafe fn copy_buffer_to_image(&mut self, src: &Buffer, dst: &Image) {
self.cmd_buf
.copy_buffer_to_image(src.mux_buffer(), dst.mux_image());
// See above.
}
/// Copy an image to another.
///
/// This is especially useful for writing to the swapchain image, as in
/// general that can't be bound to a compute shader.
///
/// Discussion question: we might have a specialized version of this
/// function for copying to the swapchain image, and a separate type.
pub unsafe fn blit_image(&mut self, src: &Image, dst: &Image) {
self.cmd_buf.blit_image(src.mux_image(), dst.mux_image());
}
/// Reset the query pool.
///
/// The query pool must be reset before each use, to avoid validation errors.
/// This is annoying, and we could tweak the API to make it implicit, doing
/// the reset before the first timestamp write.
pub unsafe fn reset_query_pool(&mut self, pool: &QueryPool) {
self.cmd_buf.reset_query_pool(pool);
}
/// Write a timestamp.
///
/// The query index must be less than the size of the query pool on creation.
pub unsafe fn write_timestamp(&mut self, pool: &QueryPool, query: u32) {
self.cmd_buf.write_timestamp(pool, query);
}
/// Prepare the timestamps for reading. This isn't required on Vulkan but
/// is required on (at least) DX12.
///
/// It's possible we'll make this go away, by implicitly including it
/// on command buffer submission when a query pool has been written.
pub unsafe fn finish_timestamps(&mut self, pool: &QueryPool) {
self.cmd_buf.finish_timestamps(pool);
}
/// Make sure the resource lives until the command buffer completes.
///
/// The submitted command buffer will hold this reference until the corresponding
@ -317,6 +545,17 @@ impl CmdBuf {
}
impl SubmittedCmdBuf {
/// Wait for the work to complete.
///
/// After calling this function, buffers written by the command buffer
/// can be read (assuming they were created with `MAP_READ` usage and also
/// that a host barrier was placed in the command list).
///
/// Further, resources referenced by the command list may be destroyed or
/// reused; it is a safety violation to do so beforehand.
///
/// Resources for which destruction was deferred through
/// [`add_resource`][`CmdBuf::add_resource`] will actually be dropped here.
pub fn wait(mut self) -> Result<(), Error> {
let mut item = self.0.take().unwrap();
if let Some(session) = Weak::upgrade(&self.1) {
@ -365,31 +604,33 @@ impl Drop for ImageInner {
}
}
// Probably migrate from deref here to wrapping all methods.
impl std::ops::Deref for CmdBuf {
type Target = mux::CmdBuf;
fn deref(&self) -> &Self::Target {
&self.cmd_buf
}
}
impl std::ops::DerefMut for CmdBuf {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.cmd_buf
}
}
impl Image {
pub fn mux_image(&self) -> &mux::Image {
/// Get a lower level image handle.
pub(crate) fn mux_image(&self) -> &mux::Image {
&self.0.image
}
/// Wrap a swapchain image so it can be exported to the hub level.
/// Swapchain images don't need resource tracking (or at least we
/// don't do it), so no session ref is needed.
pub(crate) fn wrap_swapchain_image(image: mux::Image) -> Image {
Image(Arc::new(ImageInner {
image,
session: Weak::new(),
}))
}
}
impl Buffer {
pub fn mux_buffer(&self) -> &mux::Buffer {
/// Get a lower level buffer handle.
pub(crate) fn mux_buffer(&self) -> &mux::Buffer {
&self.0.buffer
}
/// Write the buffer contents.
///
/// The buffer must have been created with `MAP_WRITE` usage, and with
/// a size large enough to accommodate the given slice.
pub unsafe fn write<T: PlainData>(&mut self, contents: &[T]) -> Result<(), Error> {
if let Some(session) = Weak::upgrade(&self.0.session) {
session.device.write_buffer(
@ -402,6 +643,12 @@ impl Buffer {
// else session lost error?
Ok(())
}
/// Read the buffer contents.
///
/// The buffer must have been created with `MAP_READ` usage. The caller
/// is also responsible for ensuring that this does not read uninitialized
/// memory.
pub unsafe fn read<T: PlainData>(&self, result: &mut Vec<T>) -> Result<(), Error> {
let size = self.mux_buffer().size();
let len = size as usize / std::mem::size_of::<T>();
@ -438,6 +685,10 @@ impl PipelineBuilder {
self
}
/// Create the compute pipeline.
///
/// The shader code must be given in an appropriate format for
/// the back-end. See [`Session::choose_shader`] for a helper.
pub unsafe fn create_compute_pipeline<'a>(
self,
session: &Session,

View file

@ -4,43 +4,58 @@
/// In time, it may go away and be replaced by either gfx-hal or wgpu.
use bitflags::bitflags;
pub mod backend;
pub mod hub;
mod backend;
mod hub;
#[macro_use]
mod macros;
// TODO: Don't make the module pub, but do figure out which types to
// export at the root level.
pub mod mux;
mod mux;
pub use crate::mux::{
DescriptorSet, Fence, Instance, Pipeline, QueryPool, Sampler, Semaphore, ShaderCode, Surface,
Swapchain,
};
pub use hub::{
Buffer, CmdBuf, DescriptorSetBuilder, Image, PipelineBuilder, PlainData, RetainResource,
Session, SubmittedCmdBuf,
};
// TODO: because these are conditionally included, "cargo fmt" does not
// see them. Figure that out, possibly including running rustfmt manually.
mux_cfg! {
#[cfg(vk)]
pub mod vulkan;
mod vulkan;
}
mux_cfg! {
#[cfg(dx12)]
pub mod dx12;
mod dx12;
}
#[cfg(target_os = "macos")]
pub mod metal;
mod metal;
/// The common error type for the crate.
///
/// This keeps things imple and can be expanded later.
pub type Error = Box<dyn std::error::Error>;
pub use crate::backend::CmdBuf;
/// An image layout state.
///
/// An image must be in a particular layout state to be used for
/// a purpose such as being bound to a shader.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum ImageLayout {
/// The initial state for a newly created image.
Undefined,
/// A swapchain ready to be presented.
Present,
/// The source for a copy operation.
BlitSrc,
/// The destination for a copy operation.
BlitDst,
/// Read/write binding to a shader.
General,
/// Able to be sampled from by shaders.
ShaderRead,
}
@ -55,7 +70,7 @@ pub enum SamplerParams {
}
bitflags! {
/// The intended usage for this buffer.
/// The intended usage for a buffer, specified on creation.
pub struct BufferUsage: u32 {
/// The buffer can be mapped for reading CPU-side.
const MAP_READ = 0x1;
@ -92,6 +107,11 @@ pub struct GpuInfo {
pub use_staging_buffers: bool,
}
/// The range of subgroup sizes supported by a back-end, when available.
///
/// The subgroup size is always a power of 2. The ability to specify
/// subgroup size for a compute shader is a newer feature, not always
/// available.
#[derive(Clone, Debug)]
pub struct SubgroupSize {
min: u32,

View file

@ -16,6 +16,8 @@
//! Macros, mostly to automate backend selection tedium.
#[doc(hidden)]
/// Configure an item to be included only for the given GPU.
#[macro_export]
macro_rules! mux_cfg {
( #[cfg(vk)] $($tokens:tt)* ) => {
@ -31,6 +33,8 @@ macro_rules! mux_cfg {
};
}
#[doc(hidden)]
/// Define an enum with a variant per GPU.
#[macro_export]
macro_rules! mux_enum {
( $(#[$outer:meta])* $v:vis enum $name:ident {
@ -112,6 +116,7 @@ macro_rules! mux_enum {
};
}
/// Define an enum with a variant per GPU for a Device associated type.
macro_rules! mux_device_enum {
( $(#[$outer:meta])* $assoc_type: ident) => {
$crate::mux_enum! {
@ -125,6 +130,8 @@ macro_rules! mux_device_enum {
}
}
#[doc(hidden)]
/// A match statement where match arms are conditionally configured per GPU.
#[macro_export]
macro_rules! mux_match {
( $e:expr ;

View file

@ -74,14 +74,28 @@ mux_enum! {
mux_device_enum! { Buffer }
mux_device_enum! { Image }
mux_device_enum! { Fence }
mux_device_enum! { Semaphore }
mux_device_enum! {
/// An object for waiting on command buffer completion.
Fence }
mux_device_enum! {
/// A semaphore for swapchain presentation.
///
/// Depending on what kind of synchronization is needed for swapchain
/// presentation by the back-end, this may or may not be a "real"
/// semaphore.
Semaphore }
mux_device_enum! { PipelineBuilder }
mux_device_enum! { Pipeline }
mux_device_enum! {
/// A pipeline object; basically a compiled shader.
Pipeline }
mux_device_enum! { DescriptorSetBuilder }
mux_device_enum! { DescriptorSet }
mux_device_enum! {
/// A descriptor set; a binding of resources for access by a shader.
DescriptorSet }
mux_device_enum! { CmdBuf }
mux_device_enum! { QueryPool }
mux_device_enum! {
/// An object for recording timer queries.
QueryPool }
mux_device_enum! { Sampler }
/// The code for a shader, either as source or intermediate representation.
@ -736,7 +750,11 @@ impl Swapchain {
}
}
pub unsafe fn image(&self, idx: usize) -> Image {
pub unsafe fn image(&self, idx: usize) -> crate::Image {
crate::Image::wrap_swapchain_image(self.image_raw(idx))
}
pub unsafe fn image_raw(&self, idx: usize) -> Image {
mux_match! { self;
Swapchain::Vk(s) => Image::Vk(s.image(idx)),
Swapchain::Dx12(s) => Image::Dx12(s.image(idx)),

View file

@ -822,7 +822,7 @@ impl crate::backend::Device for VkDevice {
}
}
impl crate::CmdBuf<VkDevice> for CmdBuf {
impl crate::backend::CmdBuf<VkDevice> for CmdBuf {
unsafe fn begin(&mut self) {
self.device
.device

View file

@ -11,9 +11,10 @@ use raw_window_handle::{HasRawWindowHandle, RawWindowHandle};
use ndk::native_window::NativeWindow;
use ndk_glue::Event;
use piet_gpu_hal::hub;
use piet_gpu_hal::mux::{Instance, QueryPool, Surface, Swapchain};
use piet_gpu_hal::{CmdBuf, Error, ImageLayout};
use piet_gpu_hal::{
Error, ImageLayout, Instance, QueryPool, Semaphore, Session, SubmittedCmdBuf, Surface,
Swapchain,
};
use piet_gpu::{render_scene, PietGpuRenderContext, Renderer};
@ -28,14 +29,14 @@ struct MyHandle {
// State required to render and present the contents
struct GfxState {
session: hub::Session,
session: Session,
renderer: Renderer,
swapchain: Swapchain,
current_frame: usize,
last_frame_idx: usize,
submitted: Option<hub::SubmittedCmdBuf>,
submitted: Option<SubmittedCmdBuf>,
query_pools: Vec<QueryPool>,
present_semaphores: Vec<hub::Semaphore>,
present_semaphores: Vec<Semaphore>,
}
const WIDTH: usize = 1080;
@ -95,7 +96,7 @@ impl GfxState {
let device = instance.device(surface)?;
let mut swapchain =
instance.swapchain(WIDTH / 2, HEIGHT / 2, &device, surface.unwrap())?;
let session = hub::Session::new(device);
let session = Session::new(device);
let mut current_frame = 0;
let present_semaphores = (0..NUM_FRAMES)
.map(|_| session.create_semaphore())
@ -113,7 +114,7 @@ impl GfxState {
let renderer = Renderer::new(&session, scene, n_paths, n_pathseg, n_trans)?;
let submitted: Option<hub::SubmittedCmdBuf> = None;
let submitted: Option<SubmittedCmdBuf> = None;
let current_frame = 0;
let last_frame_idx = 0;
Ok(GfxState {
@ -151,7 +152,7 @@ impl GfxState {
// Image -> Swapchain
cmd_buf.image_barrier(&swap_image, ImageLayout::Undefined, ImageLayout::BlitDst);
cmd_buf.blit_image(self.renderer.image_dev.mux_image(), &swap_image);
cmd_buf.blit_image(&self.renderer.image_dev, &swap_image);
cmd_buf.image_barrier(&swap_image, ImageLayout::BlitDst, ImageLayout::Present);
cmd_buf.finish();

View file

@ -4,9 +4,7 @@ use std::path::Path;
use clap::{App, Arg};
use piet_gpu_hal::hub;
use piet_gpu_hal::mux::Instance;
use piet_gpu_hal::{BufferUsage, Error};
use piet_gpu_hal::{BufferUsage, Error, Instance, Session};
use piet_gpu::{render_scene, render_svg, PietGpuRenderContext, Renderer, HEIGHT, WIDTH};
@ -228,7 +226,7 @@ fn main() -> Result<(), Error> {
let (instance, _) = Instance::new(None)?;
unsafe {
let device = instance.device(None)?;
let session = hub::Session::new(device);
let session = Session::new(device);
let mut cmd_buf = session.cmd_buf()?;
let query_pool = session.create_query_pool(8)?;
@ -258,7 +256,7 @@ fn main() -> Result<(), Error> {
cmd_buf.begin();
renderer.record(&mut cmd_buf, &query_pool);
cmd_buf.copy_image_to_buffer(renderer.image_dev.mux_image(), image_buf.mux_buffer());
cmd_buf.copy_image_to_buffer(&renderer.image_dev, &image_buf);
cmd_buf.host_barrier();
cmd_buf.finish();
let start = std::time::Instant::now();

View file

@ -1,6 +1,4 @@
use piet_gpu_hal::hub;
use piet_gpu_hal::mux::Instance;
use piet_gpu_hal::{Error, ImageLayout};
use piet_gpu_hal::{Error, ImageLayout, Instance, Session, SubmittedCmdBuf};
use piet_gpu::{render_scene, PietGpuRenderContext, Renderer, HEIGHT, WIDTH};
@ -27,7 +25,7 @@ fn main() -> Result<(), Error> {
let device = instance.device(surface.as_ref())?;
let mut swapchain =
instance.swapchain(WIDTH / 2, HEIGHT / 2, &device, surface.as_ref().unwrap())?;
let session = hub::Session::new(device);
let session = Session::new(device);
let mut current_frame = 0;
let present_semaphores = (0..NUM_FRAMES)
@ -46,7 +44,7 @@ fn main() -> Result<(), Error> {
let renderer = Renderer::new(&session, scene, n_paths, n_pathseg, n_trans)?;
let mut submitted: Option<hub::SubmittedCmdBuf> = None;
let mut submitted: Option<SubmittedCmdBuf> = None;
let mut last_frame_idx = 0;
event_loop.run(move |event, _, control_flow| {
@ -89,7 +87,6 @@ fn main() -> Result<(), Error> {
));
}
let (image_idx, acquisition_semaphore) = swapchain.next().unwrap();
let swap_image = swapchain.image(image_idx);
let query_pool = &query_pools[frame_idx];
@ -103,7 +100,7 @@ fn main() -> Result<(), Error> {
ImageLayout::Undefined,
ImageLayout::BlitDst,
);
cmd_buf.blit_image(renderer.image_dev.mux_image(), &swap_image);
cmd_buf.blit_image(&renderer.image_dev, &swap_image);
cmd_buf.image_barrier(&swap_image, ImageLayout::BlitDst, ImageLayout::Present);
cmd_buf.finish();

View file

@ -12,9 +12,10 @@ use piet::{Color, ImageFormat, RenderContext};
use piet_gpu_types::encoder::Encode;
use piet_gpu_hal::hub;
use piet_gpu_hal::hub::ShaderCode;
use piet_gpu_hal::{BufferUsage, Error, ImageLayout};
use piet_gpu_hal::{
Buffer, BufferUsage, CmdBuf, DescriptorSet, Error, Image, ImageLayout, Pipeline, QueryPool,
Session, ShaderCode,
};
use pico_svg::PicoSvg;
@ -188,53 +189,53 @@ pub fn dump_k1_data(k1_buf: &[u32]) {
}
pub struct Renderer {
pub image_dev: hub::Image, // resulting image
pub image_dev: Image, // resulting image
// The reference is held by the pipelines. We will be changing
// this to make the scene upload dynamic.
#[allow(dead_code)]
scene_buf: hub::Buffer,
scene_buf: Buffer,
memory_buf_host: hub::Buffer,
memory_buf_dev: hub::Buffer,
memory_buf_host: Buffer,
memory_buf_dev: Buffer,
state_buf: hub::Buffer,
state_buf: Buffer,
#[allow(dead_code)]
config_buf: hub::Buffer,
config_buf: Buffer,
el_pipeline: hub::Pipeline,
el_ds: hub::DescriptorSet,
el_pipeline: Pipeline,
el_ds: DescriptorSet,
tile_pipeline: hub::Pipeline,
tile_ds: hub::DescriptorSet,
tile_pipeline: Pipeline,
tile_ds: DescriptorSet,
path_pipeline: hub::Pipeline,
path_ds: hub::DescriptorSet,
path_pipeline: Pipeline,
path_ds: DescriptorSet,
backdrop_pipeline: hub::Pipeline,
backdrop_ds: hub::DescriptorSet,
backdrop_pipeline: Pipeline,
backdrop_ds: DescriptorSet,
bin_pipeline: hub::Pipeline,
bin_ds: hub::DescriptorSet,
bin_pipeline: Pipeline,
bin_ds: DescriptorSet,
coarse_pipeline: hub::Pipeline,
coarse_ds: hub::DescriptorSet,
coarse_pipeline: Pipeline,
coarse_ds: DescriptorSet,
k4_pipeline: hub::Pipeline,
k4_ds: hub::DescriptorSet,
k4_pipeline: Pipeline,
k4_ds: DescriptorSet,
n_elements: usize,
n_paths: usize,
n_pathseg: usize,
// Keep a reference to the image so that it is not destroyed.
_bg_image: hub::Image,
_bg_image: Image,
}
impl Renderer {
pub unsafe fn new(
session: &hub::Session,
session: &Session,
scene: &[u8],
n_paths: usize,
n_pathseg: usize,
@ -385,15 +386,12 @@ impl Renderer {
})
}
pub unsafe fn record(&self, cmd_buf: &mut hub::CmdBuf, query_pool: &hub::QueryPool) {
cmd_buf.copy_buffer(
self.memory_buf_host.mux_buffer(),
self.memory_buf_dev.mux_buffer(),
);
cmd_buf.clear_buffer(self.state_buf.mux_buffer(), None);
pub unsafe fn record(&self, cmd_buf: &mut CmdBuf, query_pool: &QueryPool) {
cmd_buf.copy_buffer(&self.memory_buf_host, &self.memory_buf_dev);
cmd_buf.clear_buffer(&self.state_buf, None);
cmd_buf.memory_barrier();
cmd_buf.image_barrier(
self.image_dev.mux_image(),
&self.image_dev,
ImageLayout::Undefined,
ImageLayout::General,
);
@ -458,20 +456,16 @@ impl Renderer {
);
cmd_buf.write_timestamp(&query_pool, 7);
cmd_buf.memory_barrier();
cmd_buf.image_barrier(
self.image_dev.mux_image(),
ImageLayout::General,
ImageLayout::BlitSrc,
);
cmd_buf.image_barrier(&self.image_dev, ImageLayout::General, ImageLayout::BlitSrc);
}
pub fn make_image(
session: &hub::Session,
session: &Session,
width: usize,
height: usize,
buf: &[u8],
format: ImageFormat,
) -> Result<hub::Image, Error> {
) -> Result<Image, Error> {
unsafe {
if format != ImageFormat::RgbaPremul {
return Err("unsupported image format".into());
@ -482,17 +476,9 @@ impl Renderer {
let image = session.create_image2d(width.try_into()?, height.try_into()?)?;
let mut cmd_buf = session.cmd_buf()?;
cmd_buf.begin();
cmd_buf.image_barrier(
image.mux_image(),
ImageLayout::Undefined,
ImageLayout::BlitDst,
);
cmd_buf.copy_buffer_to_image(buffer.mux_buffer(), image.mux_image());
cmd_buf.image_barrier(
image.mux_image(),
ImageLayout::BlitDst,
ImageLayout::General,
);
cmd_buf.image_barrier(&image, ImageLayout::Undefined, ImageLayout::BlitDst);
cmd_buf.copy_buffer_to_image(&buffer, &image);
cmd_buf.image_barrier(&image, ImageLayout::BlitDst, ImageLayout::General);
cmd_buf.finish();
// Make sure not to drop the buffer and image until the command buffer completes.
cmd_buf.add_resource(&buffer);
@ -504,7 +490,7 @@ impl Renderer {
}
/// Make a test image.
fn make_test_bg_image(session: &hub::Session) -> hub::Image {
fn make_test_bg_image(session: &Session) -> Image {
const WIDTH: usize = 256;
const HEIGHT: usize = 256;
let mut buf = vec![255u8; WIDTH * HEIGHT * 4];