Merge pull request #11 from linebender/line_coverage

Smarter line segment coverage
This commit is contained in:
Raph Levien 2020-05-21 08:58:49 -07:00 committed by GitHub
commit e47c355018
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
2 changed files with 43 additions and 23 deletions

View file

@ -175,47 +175,67 @@ void main() {
tag = Annotated_tag(ref);
}
int x0 = 0, y0 = 0, x1 = 0, y1 = 0;
// Setup for coverage algorithm.
float a, b, c;
// Bounding box of element in pixel coordinates.
float xmin, xmax, ymin, ymax;
switch (tag) {
case Annotated_Line:
AnnoLineSeg line = Annotated_Line_read(ref);
x0 = int(floor((min(line.p0.x, line.p1.x) - line.stroke.x - xy0.x) * SX));
y0 = int(floor((min(line.p0.y, line.p1.y) - line.stroke.y - xy0.y) * SY));
x1 = int(ceil((max(line.p0.x, line.p1.x) + line.stroke.x - xy0.x) * SX));
y1 = int(ceil((max(line.p0.y, line.p1.y) + line.stroke.y - xy0.y) * SY));
xmin = min(line.p0.x, line.p1.x) - line.stroke.x;
xmax = max(line.p0.x, line.p1.x) + line.stroke.x;
ymin = min(line.p0.y, line.p1.y) - line.stroke.y;
ymax = max(line.p0.y, line.p1.y) + line.stroke.y;
float dx = line.p1.x - line.p0.x;
float dy = line.p1.y - line.p0.y;
// Set up for per-scanline coverage formula, below.
float invslope = abs(dy) < 1e-9 ? 1e9 : dx / dy;
c = abs(invslope) * (0.5 * float(TILE_HEIGHT_PX) + line.stroke.y) * SX;
b = invslope; // Note: assumes square tiles, otherwise scale.
a = (line.p0.x - xy0.x - (line.p0.y - 0.5 * float(TILE_HEIGHT_PX) - xy0.y) * b) * SX;
break;
case Annotated_Fill:
case Annotated_Stroke:
// Note: we take advantage of the fact that fills and strokes
// have compatible layout.
AnnoFill fill = Annotated_Fill_read(ref);
x0 = int(floor((fill.bbox.x - xy0.x) * SX));
y0 = int(floor((fill.bbox.y - xy0.y) * SY));
x1 = int(ceil((fill.bbox.z - xy0.x) * SX));
y1 = int(ceil((fill.bbox.w - xy0.y) * SY));
xmin = fill.bbox.x;
xmax = fill.bbox.z;
ymin = fill.bbox.y;
ymax = fill.bbox.w;
// Just let the clamping to xmin and xmax determine the bounds.
a = 0.0;
b = 0.0;
c = 1e9;
break;
default:
ymin = 0;
ymax = 0;
break;
}
// At this point, we run an iterator over the coverage area,
// trying to keep divergence low.
// Right now, it's just a bbox, but we'll get finer with
// segments.
// Draw the coverage area into the bitmaks. This uses an algorithm
// that computes the coverage of a span for given scanline.
// Compute bounding box in tiles and clip to this bin.
int x0 = int(floor((xmin - xy0.x) * SX));
int x1 = int(ceil((xmax - xy0.x) * SX));
int y0 = int(floor((ymin - xy0.y) * SY));
int y1 = int(ceil((ymax - xy0.y) * SY));
x0 = clamp(x0, 0, N_TILE_X);
x1 = clamp(x1, x0, N_TILE_X);
y0 = clamp(y0, 0, N_TILE_Y);
y1 = clamp(y1, y0, N_TILE_Y);
// This loop draws a rectangle to the coverage bitmasks. For
// line segments, draw more precisely.
if (x0 == x1) y1 = y0;
int x = x0, y = y0;
uint my_slice = th_ix / 32;
uint my_mask = 1 << (th_ix & 31);
while (y < y1) {
float t = a + b * float(y0);
for (uint y = y0; y < y1; y++) {
uint xx0 = clamp(int(floor(t - c)), x0, x1);
uint xx1 = clamp(int(ceil(t + c)), x0, x1);
for (uint x = xx0; x < xx1; x++) {
atomicOr(sh_bitmaps[my_slice][y * N_TILE_X + x], my_mask);
x++;
if (x == x1) {
x = x0;
y++;
}
t += b;
}
barrier();

Binary file not shown.