[derive] Add writers, enums

This adds shader generation of writers (and cleans up some other
things) and much better support for enums.
This commit is contained in:
Raph Levien 2020-04-14 12:10:26 -07:00
parent 487d948217
commit e86ea9eff4
3 changed files with 309 additions and 37 deletions

View file

@ -15,18 +15,32 @@ pub fn gen_glsl(module: &LayoutModule) -> String {
gen_refdef(&mut r, &name); gen_refdef(&mut r, &name);
} }
for name in &module.def_names { for name in &module.def_names {
let def = module.defs.get(name).unwrap(); match module.defs.get(name).unwrap() {
if let (size, LayoutTypeDef::Struct(fields)) = def { (size, LayoutTypeDef::Struct(fields)) => {
gen_struct_def(&mut r, &name, size.size, fields); gen_struct_def(&mut r, name, fields);
gen_item_def(&mut r, name, size.size);
}
(size, LayoutTypeDef::Enum(en)) => {
gen_enum_def(&mut r, name, en);
gen_item_def(&mut r, name, size.size);
}
} }
} }
for name in &module.def_names { for name in &module.def_names {
let def = module.defs.get(name).unwrap(); let def = module.defs.get(name).unwrap();
match def { match def {
(size, LayoutTypeDef::Struct(fields)) => { (_size, LayoutTypeDef::Struct(fields)) => {
gen_struct_read(&mut r, &module.name, &name, size.size, fields) gen_struct_read(&mut r, &module.name, &name, fields);
if module.gpu_write {
gen_struct_write(&mut r, &module.name, &name, fields);
}
}
(_size, LayoutTypeDef::Enum(en)) => {
gen_enum_read(&mut r, &module.name, &name, en);
if module.gpu_write {
gen_enum_write(&mut r, &module.name, &name, en);
}
} }
(_size, LayoutTypeDef::Enum(_)) => gen_enum_read(&mut r, &module.name, &name),
} }
} }
r r
@ -38,29 +52,51 @@ fn gen_refdef(r: &mut String, name: &str) {
writeln!(r, "}};\n").unwrap(); writeln!(r, "}};\n").unwrap();
} }
fn gen_struct_def(r: &mut String, name: &str, size: usize, fields: &[(String, usize, LayoutType)]) { fn gen_struct_def(r: &mut String, name: &str, fields: &[(String, usize, LayoutType)]) {
writeln!(r, "struct {} {{", name).unwrap(); writeln!(r, "struct {} {{", name).unwrap();
for (name, _offset, ty) in fields { for (name, _offset, ty) in fields {
writeln!(r, " {} {};", glsl_type(&ty.ty), name).unwrap(); writeln!(r, " {} {};", glsl_type(&ty.ty), name).unwrap();
} }
writeln!(r, "}};\n").unwrap(); writeln!(r, "}};\n").unwrap();
}
fn gen_enum_def(r: &mut String, name: &str, variants: &[(String, Vec<(usize, LayoutType)>)]) {
for (i, (var_name, _payload)) in variants.iter().enumerate() {
writeln!(r, "#define {}_{} {}", name, var_name, i).unwrap();
}
}
fn gen_item_def(r: &mut String, name: &str, size: usize) {
writeln!(r, "#define {}_size {}\n", name, size).unwrap(); writeln!(r, "#define {}_size {}\n", name, size).unwrap();
writeln!(
r,
"{}Ref {}_index({}Ref ref, uint index) {{",
name, name, name
)
.unwrap();
writeln!(
r,
" return {}Ref(ref.offset + index * {}_size);",
name, name
)
.unwrap();
writeln!(r, "}}\n").unwrap();
} }
fn gen_struct_read( fn gen_struct_read(
r: &mut String, r: &mut String,
bufname: &str, bufname: &str,
name: &str, name: &str,
size: usize,
fields: &[(String, usize, LayoutType)], fields: &[(String, usize, LayoutType)],
) { ) {
writeln!(r, "{} {}_read({}Ref ref) {{", name, name, name).unwrap(); writeln!(r, "{} {}_read({}Ref ref) {{", name, name, name).unwrap();
writeln!(r, " uint ix = ref.offset >> 2;").unwrap(); writeln!(r, " uint ix = ref.offset >> 2;").unwrap();
for i in 0..(size / 4) { let coverage = crate::layout::struct_coverage(fields, false);
// TODO: don't generate raw reads for inline structs for (i, fields) in coverage.iter().enumerate() {
if !fields.is_empty() {
writeln!(r, " uint raw{} = {}[ix + {}];", i, bufname, i).unwrap(); writeln!(r, " uint raw{} = {}[ix + {}];", i, bufname, i).unwrap();
} }
}
writeln!(r, " {} s;", name).unwrap(); writeln!(r, " {} s;", name).unwrap();
for (name, offset, ty) in fields { for (name, offset, ty) in fields {
writeln!(r, " s.{} = {};", name, gen_extract(*offset, &ty.ty)).unwrap(); writeln!(r, " s.{} = {};", name, gen_extract(*offset, &ty.ty)).unwrap();
@ -69,10 +105,35 @@ fn gen_struct_read(
writeln!(r, "}}\n").unwrap(); writeln!(r, "}}\n").unwrap();
} }
fn gen_enum_read(r: &mut String, bufname: &str, name: &str) { fn gen_enum_read(
r: &mut String,
bufname: &str,
name: &str,
variants: &[(String, Vec<(usize, LayoutType)>)],
) {
writeln!(r, "uint {}_tag({}Ref ref) {{", name, name).unwrap(); writeln!(r, "uint {}_tag({}Ref ref) {{", name, name).unwrap();
writeln!(r, " return {}[ref.offset >> 2];", bufname).unwrap(); writeln!(r, " return {}[ref.offset >> 2];", bufname).unwrap();
writeln!(r, "}}\n").unwrap(); writeln!(r, "}}\n").unwrap();
for (var_name, payload) in variants {
if payload.len() == 1 {
if let GpuType::InlineStruct(structname) = &payload[0].1.ty {
writeln!(
r,
"{} {}_{}_read({}Ref ref) {{",
structname, name, var_name, name
)
.unwrap();
writeln!(
r,
" return {}_read({}Ref(ref.offset + {}));",
structname, structname, payload[0].0
)
.unwrap();
writeln!(r, "}}\n").unwrap();
}
}
// TODO: support for variants that aren't one struct.
}
} }
fn gen_extract(offset: usize, ty: &GpuType) -> String { fn gen_extract(offset: usize, ty: &GpuType) -> String {
@ -141,14 +202,146 @@ fn extract_ibits(offset: usize, nbytes: usize) -> String {
format!("int(raw{}) >> {}", offset / 4, (offset % 4) * 8) format!("int(raw{}) >> {}", offset / 4, (offset % 4) * 8)
} else { } else {
format!( format!(
"(int(raw{}) << {}) >> {}", "int(raw{} << {}) >> {}",
offset / 4, offset / 4,
(3 - offset % 4) * 8, ((4 - nbytes) - offset % 4) * 8,
(4 - nbytes) * 8 (4 - nbytes) * 8
) )
} }
} }
// Writing
fn gen_struct_write(
r: &mut String,
bufname: &str,
name: &str,
fields: &[(String, usize, LayoutType)],
) {
writeln!(r, "void {}_write({}Ref ref, {} s) {{", name, name, name).unwrap();
let coverage = crate::layout::struct_coverage(fields, true);
for (i, field_ixs) in coverage.iter().enumerate() {
let mut pieces = Vec::new();
for field_ix in field_ixs {
let (name, offset, ty) = &fields[*field_ix];
match &ty.ty {
GpuType::Scalar(scalar) => {
let inner = format!("s.{}", name);
pieces.push(gen_pack_bits_scalar(scalar, *offset, &inner));
}
GpuType::Vector(scalar, len) => {
let size = scalar.size();
let ix_lo = (i * 4 - offset) / size;
let ix_hi = ((4 + i * 4 - offset) / size).min(*len);
for ix in ix_lo..ix_hi {
let scalar_offset = offset + ix * size;
let inner = format!("s.{}.{}", name, &"xyzw"[ix..ix + 1]);
pieces.push(gen_pack_bits_scalar(scalar, scalar_offset, &inner));
}
}
GpuType::InlineStruct(structname) => {
writeln!(
r,
" {}_write({}Ref({}), s.{});",
structname,
structname,
simplified_add("ref.offset", *offset),
name
)
.unwrap();
}
GpuType::Ref(_) => pieces.push(format!("s.{}.offset", name)),
}
}
if !pieces.is_empty() {
write!(r, " {}[{}] = ", bufname, i).unwrap();
for (j, piece) in pieces.iter().enumerate() {
if j != 0 {
write!(r, " | ").unwrap();
}
write!(r, "{}", piece).unwrap();
}
writeln!(r, ";").unwrap();
}
}
writeln!(r, "}}\n").unwrap();
}
fn gen_pack_bits_scalar(ty: &GpuScalar, offset: usize, inner: &str) -> String {
let shift = (offset % 4) * 8;
let bits = match ty {
GpuScalar::F32 => format!("floatBitsToUint({})", inner),
// Note: this doesn't mask small unsigned int types; the caller is
// responsible for making sure they don't overflow.
GpuScalar::U8 | GpuScalar::U16 | GpuScalar::U32 => inner.into(),
GpuScalar::I8 => {
if shift == 24 {
format!("uint({})", inner)
} else {
format!("(uint({}) & 0xff)", inner)
}
}
GpuScalar::I16 => {
if shift == 16 {
format!("uint({})", inner)
} else {
format!("(uint({}) & 0xffff)", inner)
}
}
GpuScalar::I32 => format!("uint({})", inner),
};
if shift == 0 {
bits
} else {
format!("({} << {})", bits, shift)
}
}
fn gen_enum_write(
r: &mut String,
bufname: &str,
name: &str,
variants: &[(String, Vec<(usize, LayoutType)>)],
) {
for (var_name, payload) in variants {
if payload.is_empty() {
writeln!(r, "void {}_{}_write({}Ref ref) {{", name, var_name, name).unwrap();
writeln!(
r,
" {}[ref.offset >> 2] = {}_{};",
bufname, name, var_name
)
.unwrap();
writeln!(r, "}}\n").unwrap();
} else if payload.len() == 1 {
if let GpuType::InlineStruct(structname) = &payload[0].1.ty {
writeln!(
r,
"void {}_{}_write({}Ref ref, {} s) {{",
name, var_name, name, structname
)
.unwrap();
writeln!(
r,
" {}[ref.offset >> 2] = {}_{};",
bufname, name, var_name
)
.unwrap();
writeln!(
r,
" {}_write({}Ref(ref.offset + {}), s);",
structname, structname, payload[0].0
)
.unwrap();
writeln!(r, "}}\n").unwrap();
}
}
// TODO: support for variants that aren't one struct.
}
}
// Utility functions
fn glsl_type(ty: &GpuType) -> String { fn glsl_type(ty: &GpuType) -> String {
match ty { match ty {
GpuType::Scalar(scalar) => glsl_scalar(scalar).into(), GpuType::Scalar(scalar) => glsl_scalar(scalar).into(),
@ -186,6 +379,7 @@ fn glsl_vecname(s: &GpuScalar) -> &'static str {
GpuScalar::U8 | GpuScalar::U16 | GpuScalar::U32 => "uvec", GpuScalar::U8 | GpuScalar::U16 | GpuScalar::U32 => "uvec",
} }
} }
/// If `c = 0`, return `"var_name"`, else `"var_name + c"` /// If `c = 0`, return `"var_name"`, else `"var_name + c"`
fn simplified_add(var_name: &str, c: usize) -> String { fn simplified_add(var_name: &str, c: usize) -> String {
if c == 0 { if c == 0 {

View file

@ -1,5 +1,11 @@
//! Logic for layout of structures in memory. //! Logic for layout of structures in memory.
// This is fairly simple now, but there are some extensions that are likely:
// * Addition of f16 types
// + These will probably have 2-byte alignments to support `packHalf2x16`
// * 1 byte tag values (so small struct fields can be packed along with tag)
// * (Possibly) reordering for better packing
use std::collections::{HashMap, HashSet}; use std::collections::{HashMap, HashSet};
use crate::parse::{GpuModule, GpuType, GpuTypeDef}; use crate::parse::{GpuModule, GpuType, GpuTypeDef};
@ -21,6 +27,16 @@ pub struct LayoutModule {
pub name: String, pub name: String,
pub def_names: Vec<String>, pub def_names: Vec<String>,
pub defs: HashMap<String, (Size, LayoutTypeDef)>, pub defs: HashMap<String, (Size, LayoutTypeDef)>,
enum_variants: HashSet<String>,
/// Generate shader code to write the module.
///
/// This is derived from the presence of the `gpu_write` attribute in the source module.
pub gpu_write: bool,
/// Generate Rust code to encode the module.
///
/// This is derived from the presence of the `rust_encode` attribute in the source module.
pub rust_encode: bool,
} }
struct LayoutSession<'a> { struct LayoutSession<'a> {
@ -50,6 +66,13 @@ impl LayoutTypeDef {
fn from_gpu(def: &GpuTypeDef, session: &mut LayoutSession) -> (Size, LayoutTypeDef) { fn from_gpu(def: &GpuTypeDef, session: &mut LayoutSession) -> (Size, LayoutTypeDef) {
match def { match def {
GpuTypeDef::Struct(_name, fields) => { GpuTypeDef::Struct(_name, fields) => {
// TODO: We want to be able to pack enums more tightly, in particular
// other struct fields along with the enum tag. Structs in that category
// (first field has an alignment < 4, serve as enum variant) will have a
// different layout. This is why we're tracking `is_enum_variant`.
//
// But it's a bit of YAGNI for now; we're currently reserving 4 bytes for
// the tag, so structure layout doesn't care.
let mut offset = 0; let mut offset = 0;
let mut result = Vec::new(); let mut result = Vec::new();
for field in fields { for field in fields {
@ -68,11 +91,7 @@ impl LayoutTypeDef {
let mut max_offset = 0; let mut max_offset = 0;
for variant in &en.variants { for variant in &en.variants {
let mut r2 = Vec::new(); let mut r2 = Vec::new();
let mut offset = if session.is_enum_variant(&en.name) { let mut offset = 4;
4
} else {
0
};
for field in &variant.1 { for field in &variant.1 {
let layout_ty = LayoutType::from_gpu(field, session); let layout_ty = LayoutType::from_gpu(field, session);
offset += align_padding(offset, layout_ty.size.alignment); offset += align_padding(offset, layout_ty.size.alignment);
@ -102,12 +121,22 @@ impl LayoutModule {
for def in &module.defs { for def in &module.defs {
let _ = session.layout_def(def.name()); let _ = session.layout_def(def.name());
} }
let gpu_write = module.attrs.contains("gpu_write");
let rust_encode = module.attrs.contains("rust_encode");
LayoutModule { LayoutModule {
name: module.name.clone(), name: module.name.clone(),
gpu_write,
rust_encode,
def_names, def_names,
enum_variants: session.enum_variants,
defs: session.defs, defs: session.defs,
} }
} }
#[allow(unused)]
pub fn is_enum_variant(&self, name: &str) -> bool {
self.enum_variants.contains(name)
}
} }
impl<'a> LayoutSession<'a> { impl<'a> LayoutSession<'a> {
@ -155,14 +184,52 @@ impl<'a> LayoutSession<'a> {
} }
} }
#[allow(unused)]
fn is_enum_variant(&self, name: &str) -> bool { fn is_enum_variant(&self, name: &str) -> bool {
self.enum_variants.contains(name) self.enum_variants.contains(name)
} }
} }
/// Compute coverage of fields.
///
/// Each element of the result represents a list of fields for one 4-byte chunk of
/// the struct layout. Inline structs are only included if requested.
pub fn struct_coverage(
fields: &[(String, usize, LayoutType)],
include_inline: bool,
) -> Vec<Vec<usize>> {
let mut result: Vec<Vec<usize>> = Vec::new();
for (i, (_name, offset, ty)) in fields.iter().enumerate() {
let size = match ty.ty {
GpuType::Scalar(scalar) => scalar.size(),
GpuType::Vector(scalar, len) => scalar.size() * len,
GpuType::Ref(_) => 4,
GpuType::InlineStruct(_) => {
if include_inline {
4
} else {
0
}
}
};
if size > 0 {
for ix in (offset / 4)..(offset + size + 3) / 4 {
if ix >= result.len() {
result.resize_with(ix + 1, Default::default);
}
result[ix].push(i);
}
}
}
result
}
impl Size { impl Size {
fn new(size: usize) -> Size { fn new(size: usize) -> Size {
let alignment = if size < 4 { 1 } else { 4 }; // Note: there is special case we could do better:
// `(u8, u16, u8)`, where the alignment could be 1. However,
// this case can also be solved by reordering.
let alignment = size.min(4);
Size { size, alignment } Size { size, alignment }
} }

View file

@ -2,6 +2,8 @@
extern crate proc_macro; extern crate proc_macro;
use std::collections::HashSet;
use syn::{ use syn::{
Expr, ExprLit, Fields, FieldsNamed, FieldsUnnamed, GenericArgument, ItemEnum, ItemStruct, Lit, Expr, ExprLit, Fields, FieldsNamed, FieldsUnnamed, GenericArgument, ItemEnum, ItemStruct, Lit,
PathArguments, TypeArray, TypePath, PathArguments, TypeArray, TypePath,
@ -42,6 +44,7 @@ pub enum GpuTypeDef {
pub struct GpuModule { pub struct GpuModule {
pub name: String, pub name: String,
pub attrs: HashSet<String>,
pub defs: Vec<GpuTypeDef>, pub defs: Vec<GpuTypeDef>,
} }
@ -72,22 +75,6 @@ impl GpuScalar {
} }
} }
fn ty_as_single_ident(ty: &syn::Type) -> Option<String> {
if let syn::Type::Path(TypePath {
path: syn::Path { segments, .. },
..
}) = ty
{
if segments.len() == 1 {
let seg = &segments[0];
if seg.arguments == PathArguments::None {
return Some(seg.ident.to_string());
}
}
}
None
}
impl GpuType { impl GpuType {
fn from_syn(ty: &syn::Type) -> Result<Self, String> { fn from_syn(ty: &syn::Type) -> Result<Self, String> {
//println!("gputype {:#?}", ty); //println!("gputype {:#?}", ty);
@ -189,6 +176,12 @@ impl GpuTypeDef {
impl GpuModule { impl GpuModule {
pub fn from_syn(module: &syn::ItemMod) -> Result<Self, String> { pub fn from_syn(module: &syn::ItemMod) -> Result<Self, String> {
let name = module.ident.to_string(); let name = module.ident.to_string();
let mut attrs = HashSet::new();
for attr in &module.attrs {
if let Some(id) = path_as_single_ident(&attr.path) {
attrs.insert(id.to_owned());
}
}
let mut defs = Vec::new(); let mut defs = Vec::new();
if let Some((_brace, items)) = &module.content { if let Some((_brace, items)) = &module.content {
for item in items { for item in items {
@ -196,7 +189,25 @@ impl GpuModule {
defs.push(def); defs.push(def);
} }
} }
Ok(GpuModule { name, defs }) Ok(GpuModule { name, attrs, defs })
}
}
fn path_as_single_ident(path: &syn::Path) -> Option<String> {
if path.segments.len() == 1 {
let seg = &path.segments[0];
if seg.arguments == PathArguments::None {
return Some(seg.ident.to_string());
}
}
None
}
fn ty_as_single_ident(ty: &syn::Type) -> Option<String> {
if let syn::Type::Path(TypePath { path, .. }) = ty {
path_as_single_ident(path)
} else {
None
} }
} }