mirror of
https://github.com/italicsjenga/vello.git
synced 2025-01-09 12:21:31 +11:00
Merge pull request #16 from linebender/new_merge
More parallel merging in coarse raster
This commit is contained in:
commit
f6ef1c16ab
|
@ -184,8 +184,8 @@ fn main() -> Result<(), Error> {
|
|||
/*
|
||||
let mut data: Vec<u32> = Default::default();
|
||||
device.read_buffer(&renderer.ptcl_buf, &mut data).unwrap();
|
||||
//piet_gpu::dump_k1_data(&data);
|
||||
trace_ptcl(&data);
|
||||
piet_gpu::dump_k1_data(&data);
|
||||
//trace_ptcl(&data);
|
||||
*/
|
||||
|
||||
let mut img_data: Vec<u8> = Default::default();
|
||||
|
|
|
@ -43,10 +43,7 @@ layout(set = 0, binding = 3) buffer BinsBuf {
|
|||
// Note: cudaraster has N_TILE + 1 to cut down on bank conflicts.
|
||||
shared uint bitmaps[N_SLICE][N_TILE];
|
||||
shared uint count[N_SLICE][N_TILE];
|
||||
shared uint sh_my_tile;
|
||||
shared uint sh_chunk_start[N_TILE];
|
||||
shared uint sh_chunk_end[N_TILE];
|
||||
shared uint sh_chunk_jump[N_TILE];
|
||||
|
||||
shared float sh_right_edge[N_TILE];
|
||||
|
||||
|
@ -57,179 +54,140 @@ uint state_right_edge_index(uint partition_ix) {
|
|||
}
|
||||
|
||||
void main() {
|
||||
BinChunkRef chunk_ref = BinChunkRef((gl_LocalInvocationID.x * N_WG + gl_WorkGroupID.x) * BIN_INITIAL_ALLOC);
|
||||
uint wr_limit = chunk_ref.offset + BIN_INITIAL_ALLOC;
|
||||
uint chunk_n = 0;
|
||||
uint my_n_elements = n_elements;
|
||||
while (true) {
|
||||
if (gl_LocalInvocationID.x == 0) {
|
||||
sh_my_tile = atomicAdd(tile_ix, 1);
|
||||
uint my_partition = gl_WorkGroupID.x;
|
||||
|
||||
for (uint i = 0; i < N_SLICE; i++) {
|
||||
bitmaps[i][gl_LocalInvocationID.x] = 0;
|
||||
}
|
||||
barrier();
|
||||
|
||||
// Read inputs and determine coverage of bins
|
||||
uint element_ix = my_partition * N_TILE + gl_LocalInvocationID.x;
|
||||
AnnotatedRef ref = AnnotatedRef(element_ix * Annotated_size);
|
||||
uint tag = Annotated_Nop;
|
||||
if (element_ix < my_n_elements) {
|
||||
tag = Annotated_tag(ref);
|
||||
}
|
||||
int x0 = 0, y0 = 0, x1 = 0, y1 = 0;
|
||||
float my_right_edge = INFINITY;
|
||||
bool crosses_edge = false;
|
||||
switch (tag) {
|
||||
case Annotated_FillLine:
|
||||
case Annotated_StrokeLine:
|
||||
AnnoStrokeLineSeg line = Annotated_StrokeLine_read(ref);
|
||||
x0 = int(floor((min(line.p0.x, line.p1.x) - line.stroke.x) * SX));
|
||||
y0 = int(floor((min(line.p0.y, line.p1.y) - line.stroke.y) * SY));
|
||||
x1 = int(ceil((max(line.p0.x, line.p1.x) + line.stroke.x) * SX));
|
||||
y1 = int(ceil((max(line.p0.y, line.p1.y) + line.stroke.y) * SY));
|
||||
crosses_edge = tag == Annotated_FillLine && ceil(line.p0.y * TSY) != ceil(line.p1.y * TSY);
|
||||
break;
|
||||
case Annotated_Fill:
|
||||
case Annotated_Stroke:
|
||||
// Note: we take advantage of the fact that fills and strokes
|
||||
// have compatible layout.
|
||||
AnnoFill fill = Annotated_Fill_read(ref);
|
||||
x0 = int(floor(fill.bbox.x * SX));
|
||||
y0 = int(floor(fill.bbox.y * SY));
|
||||
x1 = int(ceil(fill.bbox.z * SX));
|
||||
y1 = int(ceil(fill.bbox.w * SY));
|
||||
// It probably makes more sense to track x1, to avoid having to redo
|
||||
// the rounding to tile coords.
|
||||
my_right_edge = fill.bbox.z;
|
||||
break;
|
||||
}
|
||||
|
||||
// If the last element in this partition is a fill edge, then we need to do a
|
||||
// look-forward to find the right edge of its corresponding fill. That data is
|
||||
// recorded in aggregates computed in the element processing pass.
|
||||
if (gl_LocalInvocationID.x == N_TILE - 1 && tag == Annotated_FillLine) {
|
||||
uint aggregate_ix = (my_partition + 1) * ELEMENT_BINNING_RATIO;
|
||||
// This is sequential but the expectation is that the amount of
|
||||
// look-forward is small (performance may degrade in the case
|
||||
// of massively complex paths).
|
||||
do {
|
||||
my_right_edge = uintBitsToFloat(state[state_right_edge_index(aggregate_ix)]);
|
||||
aggregate_ix++;
|
||||
} while (isinf(my_right_edge));
|
||||
}
|
||||
|
||||
// Now propagate right_edge backward, from fill to segment.
|
||||
for (uint i = 0; i < LG_N_TILE; i++) {
|
||||
// Note: we could try to cut down on write bandwidth here if the value hasn't
|
||||
// changed, but not sure it's worth the complexity to track.
|
||||
sh_right_edge[gl_LocalInvocationID.x] = my_right_edge;
|
||||
barrier();
|
||||
if (gl_LocalInvocationID.x + (1 << i) < N_TILE && isinf(my_right_edge)) {
|
||||
my_right_edge = sh_right_edge[gl_LocalInvocationID.x + (1 << i)];
|
||||
}
|
||||
barrier();
|
||||
uint my_tile = sh_my_tile;
|
||||
if (my_tile * N_TILE >= my_n_elements) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (crosses_edge) {
|
||||
x1 = int(ceil(my_right_edge * SX));
|
||||
}
|
||||
|
||||
for (uint i = 0; i < N_SLICE; i++) {
|
||||
bitmaps[i][gl_LocalInvocationID.x] = 0;
|
||||
}
|
||||
barrier();
|
||||
|
||||
// Read inputs and determine coverage of bins
|
||||
uint element_ix = my_tile * N_TILE + gl_LocalInvocationID.x;
|
||||
AnnotatedRef ref = AnnotatedRef(element_ix * Annotated_size);
|
||||
uint tag = Annotated_Nop;
|
||||
if (element_ix < my_n_elements) {
|
||||
tag = Annotated_tag(ref);
|
||||
}
|
||||
int x0 = 0, y0 = 0, x1 = 0, y1 = 0;
|
||||
float my_right_edge = INFINITY;
|
||||
bool crosses_edge = false;
|
||||
switch (tag) {
|
||||
case Annotated_FillLine:
|
||||
case Annotated_StrokeLine:
|
||||
AnnoStrokeLineSeg line = Annotated_StrokeLine_read(ref);
|
||||
x0 = int(floor((min(line.p0.x, line.p1.x) - line.stroke.x) * SX));
|
||||
y0 = int(floor((min(line.p0.y, line.p1.y) - line.stroke.y) * SY));
|
||||
x1 = int(ceil((max(line.p0.x, line.p1.x) + line.stroke.x) * SX));
|
||||
y1 = int(ceil((max(line.p0.y, line.p1.y) + line.stroke.y) * SY));
|
||||
crosses_edge = tag == Annotated_FillLine && ceil(line.p0.y * TSY) != ceil(line.p1.y * TSY);
|
||||
break;
|
||||
case Annotated_Fill:
|
||||
case Annotated_Stroke:
|
||||
// Note: we take advantage of the fact that fills and strokes
|
||||
// have compatible layout.
|
||||
AnnoFill fill = Annotated_Fill_read(ref);
|
||||
x0 = int(floor(fill.bbox.x * SX));
|
||||
y0 = int(floor(fill.bbox.y * SY));
|
||||
x1 = int(ceil(fill.bbox.z * SX));
|
||||
y1 = int(ceil(fill.bbox.w * SY));
|
||||
// It probably makes more sense to track x1, to avoid having to redo
|
||||
// the rounding to tile coords.
|
||||
my_right_edge = fill.bbox.z;
|
||||
break;
|
||||
}
|
||||
|
||||
// If the last element in this partition is a fill edge, then we need to do a
|
||||
// look-forward to find the right edge of its corresponding fill. That data is
|
||||
// recorded in aggregates computed in the element processing pass.
|
||||
if (gl_LocalInvocationID.x == N_TILE - 1 && tag == Annotated_FillLine) {
|
||||
uint aggregate_ix = (my_tile + 1) * ELEMENT_BINNING_RATIO;
|
||||
// This is sequential but the expectation is that the amount of
|
||||
// look-forward is small (performance may degrade in the case
|
||||
// of massively complex paths).
|
||||
do {
|
||||
my_right_edge = uintBitsToFloat(state[state_right_edge_index(aggregate_ix)]);
|
||||
aggregate_ix++;
|
||||
} while (isinf(my_right_edge));
|
||||
}
|
||||
|
||||
// Now propagate right_edge backward, from fill to segment.
|
||||
for (uint i = 0; i < LG_N_TILE; i++) {
|
||||
// Note: we could try to cut down on write bandwidth here if the value hasn't
|
||||
// changed, but not sure it's worth the complexity to track.
|
||||
sh_right_edge[gl_LocalInvocationID.x] = my_right_edge;
|
||||
barrier();
|
||||
if (gl_LocalInvocationID.x + (1 << i) < N_TILE && isinf(my_right_edge)) {
|
||||
my_right_edge = sh_right_edge[gl_LocalInvocationID.x + (1 << i)];
|
||||
}
|
||||
barrier();
|
||||
}
|
||||
if (crosses_edge) {
|
||||
x1 = int(ceil(my_right_edge * SX));
|
||||
}
|
||||
|
||||
// At this point, we run an iterator over the coverage area,
|
||||
// trying to keep divergence low.
|
||||
// Right now, it's just a bbox, but we'll get finer with
|
||||
// segments.
|
||||
x0 = clamp(x0, 0, N_TILE_X);
|
||||
x1 = clamp(x1, x0, N_TILE_X);
|
||||
y0 = clamp(y0, 0, N_TILE_Y);
|
||||
y1 = clamp(y1, y0, N_TILE_Y);
|
||||
if (x0 == x1) y1 = y0;
|
||||
int x = x0, y = y0;
|
||||
uint my_slice = gl_LocalInvocationID.x / 32;
|
||||
uint my_mask = 1 << (gl_LocalInvocationID.x & 31);
|
||||
while (y < y1) {
|
||||
atomicOr(bitmaps[my_slice][y * N_TILE_X + x], my_mask);
|
||||
x++;
|
||||
if (x == x1) {
|
||||
x = x0;
|
||||
y++;
|
||||
}
|
||||
}
|
||||
|
||||
barrier();
|
||||
// Allocate output segments.
|
||||
uint element_count = 0;
|
||||
for (uint i = 0; i < N_SLICE; i++) {
|
||||
element_count += bitCount(bitmaps[i][gl_LocalInvocationID.x]);
|
||||
count[i][gl_LocalInvocationID.x] = element_count;
|
||||
}
|
||||
// element_count is number of elements covering bin for this invocation.
|
||||
if (element_count != 0) {
|
||||
uint chunk_end;
|
||||
uint chunk_new_start;
|
||||
// Refactor to reduce code duplication?
|
||||
if (chunk_n > 0) {
|
||||
uint next_chunk = chunk_ref.offset + BinChunk_size + chunk_n * BinInstance_size;
|
||||
if (next_chunk + BinChunk_size + min(24, element_count * BinInstance_size) > wr_limit) {
|
||||
uint alloc_amount = max(BIN_ALLOC, BinChunk_size + element_count * BinInstance_size);
|
||||
// could try to reduce fragmentation if BIN_ALLOC is only a bit above needed
|
||||
next_chunk = atomicAdd(alloc, alloc_amount);
|
||||
wr_limit = next_chunk + alloc_amount;
|
||||
}
|
||||
BinChunk_write(chunk_ref, BinChunk(chunk_n, BinChunkRef(next_chunk)));
|
||||
chunk_ref = BinChunkRef(next_chunk);
|
||||
}
|
||||
BinInstanceRef instance_ref = BinInstanceRef(chunk_ref.offset + BinChunk_size);
|
||||
if (instance_ref.offset + element_count * BinInstance_size > wr_limit) {
|
||||
chunk_end = wr_limit;
|
||||
chunk_n = (wr_limit - instance_ref.offset) / BinInstance_size;
|
||||
uint alloc_amount = max(BIN_ALLOC, BinChunk_size + (element_count - chunk_n) * BinInstance_size);
|
||||
chunk_new_start = atomicAdd(alloc, alloc_amount);
|
||||
wr_limit = chunk_new_start + alloc_amount;
|
||||
BinChunk_write(chunk_ref, BinChunk(chunk_n, BinChunkRef(chunk_new_start)));
|
||||
chunk_ref = BinChunkRef(chunk_new_start);
|
||||
chunk_new_start += BinChunk_size;
|
||||
chunk_n = element_count - chunk_n;
|
||||
} else {
|
||||
chunk_end = ~0;
|
||||
chunk_new_start = ~0;
|
||||
chunk_n = element_count;
|
||||
}
|
||||
sh_chunk_start[gl_LocalInvocationID.x] = instance_ref.offset;
|
||||
sh_chunk_end[gl_LocalInvocationID.x] = chunk_end;
|
||||
sh_chunk_jump[gl_LocalInvocationID.x] = chunk_new_start - chunk_end;
|
||||
}
|
||||
|
||||
barrier();
|
||||
// Use similar strategy as Laine & Karras paper; loop over bbox of bins
|
||||
// touched by this element
|
||||
x = x0;
|
||||
y = y0;
|
||||
while (y < y1) {
|
||||
uint bin_ix = y * N_TILE_X + x;
|
||||
uint out_mask = bitmaps[my_slice][bin_ix];
|
||||
if ((out_mask & my_mask) != 0) {
|
||||
uint idx = bitCount(out_mask & (my_mask - 1));
|
||||
if (my_slice > 0) {
|
||||
idx += count[my_slice - 1][bin_ix];
|
||||
}
|
||||
uint out_offset = sh_chunk_start[bin_ix] + idx * BinInstance_size;
|
||||
if (out_offset >= sh_chunk_end[bin_ix]) {
|
||||
out_offset += sh_chunk_jump[bin_ix];
|
||||
}
|
||||
BinInstance_write(BinInstanceRef(out_offset), BinInstance(element_ix, my_right_edge));
|
||||
}
|
||||
x++;
|
||||
if (x == x1) {
|
||||
x = x0;
|
||||
y++;
|
||||
}
|
||||
// At this point, we run an iterator over the coverage area,
|
||||
// trying to keep divergence low.
|
||||
// Right now, it's just a bbox, but we'll get finer with
|
||||
// segments.
|
||||
x0 = clamp(x0, 0, N_TILE_X);
|
||||
x1 = clamp(x1, x0, N_TILE_X);
|
||||
y0 = clamp(y0, 0, N_TILE_Y);
|
||||
y1 = clamp(y1, y0, N_TILE_Y);
|
||||
if (x0 == x1) y1 = y0;
|
||||
int x = x0, y = y0;
|
||||
uint my_slice = gl_LocalInvocationID.x / 32;
|
||||
uint my_mask = 1 << (gl_LocalInvocationID.x & 31);
|
||||
while (y < y1) {
|
||||
atomicOr(bitmaps[my_slice][y * N_TILE_X + x], my_mask);
|
||||
x++;
|
||||
if (x == x1) {
|
||||
x = x0;
|
||||
y++;
|
||||
}
|
||||
}
|
||||
|
||||
barrier();
|
||||
// Allocate output segments.
|
||||
uint element_count = 0;
|
||||
for (uint i = 0; i < N_SLICE; i++) {
|
||||
element_count += bitCount(bitmaps[i][gl_LocalInvocationID.x]);
|
||||
count[i][gl_LocalInvocationID.x] = element_count;
|
||||
}
|
||||
// element_count is number of elements covering bin for this invocation.
|
||||
uint chunk_start = 0;
|
||||
if (element_count != 0) {
|
||||
// TODO: aggregate atomic adds (subgroup is probably fastest)
|
||||
chunk_start = atomicAdd(alloc, element_count * BinInstance_size);
|
||||
sh_chunk_start[gl_LocalInvocationID.x] = chunk_start;
|
||||
}
|
||||
// Note: it might be more efficient for reading to do this in the
|
||||
// other order (each bin is a contiguous sequence of partitions)
|
||||
uint out_ix = (my_partition * N_TILE + gl_LocalInvocationID.x) * 2;
|
||||
bins[out_ix] = element_count;
|
||||
bins[out_ix + 1] = chunk_start;
|
||||
|
||||
barrier();
|
||||
// Use similar strategy as Laine & Karras paper; loop over bbox of bins
|
||||
// touched by this element
|
||||
x = x0;
|
||||
y = y0;
|
||||
while (y < y1) {
|
||||
uint bin_ix = y * N_TILE_X + x;
|
||||
uint out_mask = bitmaps[my_slice][bin_ix];
|
||||
if ((out_mask & my_mask) != 0) {
|
||||
uint idx = bitCount(out_mask & (my_mask - 1));
|
||||
if (my_slice > 0) {
|
||||
idx += count[my_slice - 1][bin_ix];
|
||||
}
|
||||
uint out_offset = sh_chunk_start[bin_ix] + idx * BinInstance_size;
|
||||
BinInstance_write(BinInstanceRef(out_offset), BinInstance(element_ix, my_right_edge));
|
||||
}
|
||||
x++;
|
||||
if (x == x1) {
|
||||
x = x0;
|
||||
y++;
|
||||
}
|
||||
}
|
||||
BinChunk_write(chunk_ref, BinChunk(chunk_n, BinChunkRef(0)));
|
||||
}
|
||||
|
|
Binary file not shown.
|
@ -16,6 +16,7 @@ layout(set = 0, binding = 1) buffer BinsBuf {
|
|||
};
|
||||
|
||||
layout(set = 0, binding = 2) buffer AllocBuf {
|
||||
uint n_elements;
|
||||
uint alloc;
|
||||
};
|
||||
|
||||
|
@ -27,19 +28,15 @@ layout(set = 0, binding = 3) buffer PtclBuf {
|
|||
#include "bins.h"
|
||||
#include "ptcl.h"
|
||||
|
||||
#define N_RINGBUF 512
|
||||
#define LG_N_PART_READ 8
|
||||
#define N_PART_READ (1 << LG_N_PART_READ)
|
||||
|
||||
shared uint sh_elements[N_RINGBUF];
|
||||
shared float sh_right_edge[N_RINGBUF];
|
||||
shared uint sh_chunk[N_WG];
|
||||
shared uint sh_chunk_next[N_WG];
|
||||
shared uint sh_chunk_n[N_WG];
|
||||
shared uint sh_min_buf;
|
||||
// Some of these are kept in shared memory to ease register
|
||||
// pressure, but it could go either way.
|
||||
shared uint sh_first_el[N_WG];
|
||||
shared uint sh_selected_n;
|
||||
shared uint sh_elements_ref;
|
||||
shared uint sh_elements[N_TILE];
|
||||
shared float sh_right_edge[N_TILE];
|
||||
|
||||
// Number of elements in the partition; prefix sum.
|
||||
shared uint sh_part_count[N_PART_READ];
|
||||
shared uint sh_part_elements[N_PART_READ];
|
||||
|
||||
shared uint sh_bitmaps[N_SLICE][N_TILE];
|
||||
shared uint sh_backdrop[N_SLICE][N_TILE];
|
||||
|
@ -96,14 +93,16 @@ void main() {
|
|||
// Could use either linear or 2d layouts for both dispatch and
|
||||
// invocations within the workgroup. We'll use variables to abstract.
|
||||
uint bin_ix = N_TILE_X * gl_WorkGroupID.y + gl_WorkGroupID.x;
|
||||
uint partition_ix = 0;
|
||||
uint n_partitions = (n_elements + N_TILE - 1) / N_TILE;
|
||||
// Top left coordinates of this bin.
|
||||
vec2 xy0 = vec2(N_TILE_X * TILE_WIDTH_PX * gl_WorkGroupID.x, N_TILE_Y * TILE_HEIGHT_PX * gl_WorkGroupID.y);
|
||||
uint th_ix = gl_LocalInvocationID.x;
|
||||
|
||||
uint tile_x = N_TILE_X * gl_WorkGroupID.x + gl_LocalInvocationID.x % N_TILE_X;
|
||||
uint tile_y = N_TILE_Y * gl_WorkGroupID.y + gl_LocalInvocationID.x / N_TILE_X;
|
||||
uint tile_ix = tile_y * WIDTH_IN_TILES + tile_x;
|
||||
CmdRef cmd_ref = CmdRef(tile_ix * PTCL_INITIAL_ALLOC);
|
||||
uint this_tile_ix = tile_y * WIDTH_IN_TILES + tile_x;
|
||||
CmdRef cmd_ref = CmdRef(this_tile_ix * PTCL_INITIAL_ALLOC);
|
||||
uint cmd_limit = cmd_ref.offset + PTCL_INITIAL_ALLOC - 2 * Cmd_size;
|
||||
|
||||
// Allocation and management of segment output
|
||||
|
@ -113,18 +112,14 @@ void main() {
|
|||
SegmentRef last_chunk_segs = SegmentRef(0);
|
||||
alloc_chunk_remaining = 0;
|
||||
|
||||
uint wr_ix = 0;
|
||||
// I'm sure we can figure out how to do this with at least one fewer register...
|
||||
// Items up to rd_ix have been read from sh_elements
|
||||
uint rd_ix = 0;
|
||||
uint first_el;
|
||||
if (th_ix < N_WG) {
|
||||
uint start_chunk = (bin_ix * N_WG + th_ix) * BIN_INITIAL_ALLOC;
|
||||
sh_chunk[th_ix] = start_chunk;
|
||||
BinChunk chunk = BinChunk_read(BinChunkRef(start_chunk));
|
||||
sh_chunk_n[th_ix] = chunk.n;
|
||||
sh_chunk_next[th_ix] = chunk.next.offset;
|
||||
sh_first_el[th_ix] = chunk.n > 0 ?
|
||||
BinInstance_read(BinInstanceRef(start_chunk + BinChunk_size)).element_ix : ~0;
|
||||
}
|
||||
// Items up to wr_ix have been written into sh_elements
|
||||
uint wr_ix = 0;
|
||||
// Items between part_start_ix and ready_ix are ready to be transferred from sh_part_elements
|
||||
uint part_start_ix = 0;
|
||||
uint ready_ix = 0;
|
||||
if (th_ix < N_SLICE) {
|
||||
sh_bd_sign[th_ix] = 0;
|
||||
}
|
||||
|
@ -138,56 +133,56 @@ void main() {
|
|||
sh_is_segment[th_ix] = 0;
|
||||
}
|
||||
|
||||
while (wr_ix - rd_ix <= N_TILE) {
|
||||
// Choose segment with least element.
|
||||
uint my_min;
|
||||
if (th_ix < N_WG) {
|
||||
if (th_ix == 0) {
|
||||
sh_selected_n = 0;
|
||||
sh_min_buf = ~0;
|
||||
// parallel read of input partitions
|
||||
do {
|
||||
if (ready_ix == wr_ix && partition_ix < n_partitions) {
|
||||
part_start_ix = ready_ix;
|
||||
uint count = 0;
|
||||
if (th_ix < N_PART_READ && partition_ix + th_ix < n_partitions) {
|
||||
uint in_ix = ((partition_ix + th_ix) * N_TILE + bin_ix) * 2;
|
||||
count = bins[in_ix];
|
||||
sh_part_elements[th_ix] = bins[in_ix + 1];
|
||||
}
|
||||
// prefix sum of counts
|
||||
for (uint i = 0; i < LG_N_PART_READ; i++) {
|
||||
if (th_ix < N_PART_READ) {
|
||||
sh_part_count[th_ix] = count;
|
||||
}
|
||||
barrier();
|
||||
if (th_ix < N_PART_READ) {
|
||||
if (th_ix >= (1 << i)) {
|
||||
count += sh_part_count[th_ix - (1 << i)];
|
||||
}
|
||||
}
|
||||
barrier();
|
||||
}
|
||||
if (th_ix < N_PART_READ) {
|
||||
sh_part_count[th_ix] = part_start_ix + count;
|
||||
}
|
||||
barrier();
|
||||
ready_ix = sh_part_count[N_PART_READ - 1];
|
||||
partition_ix += N_PART_READ;
|
||||
}
|
||||
barrier();
|
||||
// Tempting to do this with subgroups, but atomic should be good enough.
|
||||
if (th_ix < N_WG) {
|
||||
my_min = sh_first_el[th_ix];
|
||||
atomicMin(sh_min_buf, my_min);
|
||||
}
|
||||
barrier();
|
||||
if (th_ix < N_WG) {
|
||||
if (my_min == sh_min_buf && my_min != ~0) {
|
||||
sh_elements_ref = sh_chunk[th_ix] + BinChunk_size;
|
||||
uint selected_n = sh_chunk_n[th_ix];
|
||||
sh_selected_n = selected_n;
|
||||
uint next_chunk = sh_chunk_next[th_ix];
|
||||
if (next_chunk == 0) {
|
||||
sh_first_el[th_ix] = ~0;
|
||||
} else {
|
||||
sh_chunk[th_ix] = next_chunk;
|
||||
BinChunk chunk = BinChunk_read(BinChunkRef(next_chunk));
|
||||
sh_chunk_n[th_ix] = chunk.n;
|
||||
sh_chunk_next[th_ix] = chunk.next.offset;
|
||||
sh_first_el[th_ix] = BinInstance_read(
|
||||
BinInstanceRef(next_chunk + BinChunk_size)).element_ix;
|
||||
// use binary search to find element to read
|
||||
uint ix = rd_ix + th_ix;
|
||||
if (ix >= wr_ix && ix < ready_ix) {
|
||||
uint part_ix = 0;
|
||||
for (uint i = 0; i < LG_N_PART_READ; i++) {
|
||||
uint probe = part_ix + ((N_PART_READ / 2) >> i);
|
||||
if (ix >= sh_part_count[probe - 1]) {
|
||||
part_ix = probe;
|
||||
}
|
||||
}
|
||||
ix -= part_ix > 0 ? sh_part_count[part_ix - 1] : part_start_ix;
|
||||
BinInstanceRef inst_ref = BinInstanceRef(sh_part_elements[part_ix]);
|
||||
BinInstance inst = BinInstance_read(BinInstance_index(inst_ref, ix));
|
||||
sh_elements[th_ix] = inst.element_ix;
|
||||
sh_right_edge[th_ix] = inst.right_edge;
|
||||
}
|
||||
barrier();
|
||||
uint chunk_n = sh_selected_n;
|
||||
if (chunk_n == 0) {
|
||||
// All chunks consumed
|
||||
break;
|
||||
}
|
||||
BinInstanceRef inst_ref = BinInstanceRef(sh_elements_ref);
|
||||
if (th_ix < chunk_n) {
|
||||
BinInstance inst = BinInstance_read(BinInstance_index(inst_ref, th_ix));
|
||||
uint wr_el_ix = (wr_ix + th_ix) % N_RINGBUF;
|
||||
sh_elements[wr_el_ix] = inst.element_ix;
|
||||
sh_right_edge[wr_el_ix] = inst.right_edge;
|
||||
}
|
||||
wr_ix += chunk_n;
|
||||
}
|
||||
barrier();
|
||||
|
||||
wr_ix = min(rd_ix + N_TILE, ready_ix);
|
||||
} while (wr_ix - rd_ix < N_TILE && (wr_ix < ready_ix || partition_ix < n_partitions));
|
||||
|
||||
// We've done the merge and filled the buffer.
|
||||
|
||||
|
@ -196,9 +191,8 @@ void main() {
|
|||
AnnotatedRef ref;
|
||||
float right_edge = 0.0;
|
||||
if (th_ix + rd_ix < wr_ix) {
|
||||
uint rd_el_ix = (rd_ix + th_ix) % N_RINGBUF;
|
||||
uint element_ix = sh_elements[rd_el_ix];
|
||||
right_edge = sh_right_edge[rd_el_ix];
|
||||
uint element_ix = sh_elements[th_ix];
|
||||
right_edge = sh_right_edge[th_ix];
|
||||
ref = AnnotatedRef(element_ix * Annotated_size);
|
||||
tag = Annotated_tag(ref);
|
||||
}
|
||||
|
@ -356,7 +350,7 @@ void main() {
|
|||
}
|
||||
}
|
||||
uint out_offset = seg_alloc + Segment_size * ix + SegChunk_size;
|
||||
uint rd_el_ix = (rd_ix + slice_ix * 32 + bit_ix) % N_RINGBUF;
|
||||
uint rd_el_ix = slice_ix * 32 + bit_ix;
|
||||
uint element_ix = sh_elements[rd_el_ix];
|
||||
ref = AnnotatedRef(element_ix * Annotated_size);
|
||||
AnnoFillLineSeg line = Annotated_FillLine_read(ref);
|
||||
|
@ -408,7 +402,7 @@ void main() {
|
|||
}
|
||||
}
|
||||
uint element_ref_ix = slice_ix * 32 + findLSB(nonseg_bitmap);
|
||||
uint element_ix = sh_elements[(rd_ix + element_ref_ix) % N_RINGBUF];
|
||||
uint element_ix = sh_elements[element_ref_ix];
|
||||
|
||||
// Bits up to and including the lsb
|
||||
uint bd_mask = (nonseg_bitmap - 1) ^ nonseg_bitmap;
|
||||
|
@ -526,9 +520,7 @@ void main() {
|
|||
barrier();
|
||||
|
||||
rd_ix += N_TILE;
|
||||
// The second disjunct is there as a strange workaround on Nvidia. If it is
|
||||
// removed, then the kernel fails with ERROR_DEVICE_LOST.
|
||||
if (rd_ix >= wr_ix || bin_ix == ~0) break;
|
||||
if (rd_ix >= ready_ix && partition_ix >= n_partitions) break;
|
||||
}
|
||||
Cmd_End_write(cmd_ref);
|
||||
}
|
||||
|
|
Binary file not shown.
|
@ -176,12 +176,12 @@ impl<D: Device> Renderer<D> {
|
|||
let bin_alloc_buf_dev = device.create_buffer(12, dev)?;
|
||||
|
||||
// TODO: constants
|
||||
let bin_alloc_start = 256 * 64 * N_WG;
|
||||
let bin_alloc_start = ((n_elements + 255) & !255) * 8;
|
||||
device
|
||||
.write_buffer(&bin_alloc_buf_host, &[
|
||||
n_elements as u32,
|
||||
0,
|
||||
bin_alloc_start,
|
||||
bin_alloc_start as u32,
|
||||
])
|
||||
?;
|
||||
let bin_code = include_bytes!("../shader/binning.spv");
|
||||
|
@ -192,12 +192,13 @@ impl<D: Device> Renderer<D> {
|
|||
&[],
|
||||
)?;
|
||||
|
||||
let coarse_alloc_buf_host = device.create_buffer(4, host)?;
|
||||
let coarse_alloc_buf_dev = device.create_buffer(4, dev)?;
|
||||
let coarse_alloc_buf_host = device.create_buffer(8, host)?;
|
||||
let coarse_alloc_buf_dev = device.create_buffer(8, dev)?;
|
||||
|
||||
let coarse_alloc_start = WIDTH_IN_TILES * HEIGHT_IN_TILES * PTCL_INITIAL_ALLOC;
|
||||
device
|
||||
.write_buffer(&coarse_alloc_buf_host, &[
|
||||
n_elements as u32,
|
||||
coarse_alloc_start as u32,
|
||||
])
|
||||
?;
|
||||
|
@ -264,7 +265,7 @@ impl<D: Device> Renderer<D> {
|
|||
cmd_buf.dispatch(
|
||||
&self.bin_pipeline,
|
||||
&self.bin_ds,
|
||||
(N_WG, 1, 1),
|
||||
(((self.n_elements + 255) / 256) as u32, 1, 1),
|
||||
);
|
||||
cmd_buf.write_timestamp(&query_pool, 2);
|
||||
cmd_buf.memory_barrier();
|
||||
|
|
Loading…
Reference in a new issue