Integrate DXC for translating HLSL for use in DX12. This will work
around FXC limitations and unlock the use of more advanced HLSL features
such as subgroups.
This hardcodes the use of DXIL, but it could be adapted (with a bit of
effort) to choose between DXIL and HLSL at runtime.
This gets it working on mac. Also delete old implementation.
There's also an update to winit 0.25 in here, because it was easier to
roll forward than fix inconsistent Cargo.lock. At some point, we should
systematically update all deps.
Use an array of bindtypes rather than the previous situation, which was
a choice of buffer counts, or a heavier builder pattern.
The main thing this unlocks is distinguishing between readonly and
read/write buffers, which is important for DX12.
This is WIP, the Metal part hasn't been done, and the old stuff not
deleted.
Part of #125
Move types into the toplevel and hide implementation details. Remove
deref of hub CmdBuf to mux. Restrict public visibility of internals.
Most items have some docs, though improvements are still possible. In
particular, there should be detailed safety info.
Add workgroup size to dispatch call (needed by metal). Change all fence
references to mutable for consistency.
Move backend traits to a separate file (move them out of the toplevel
namespace in preparation for the hub types going there, to make the
public API nicer).
Add a method and macro for automatically choosing shader code, and
change collatz example to generate all 3 kinds on build.
Change the interface for fences to accept mutable references. This will
actualy help the Metal backend more than dx12 (avoiding interior
mutability) but more accurately captures intent and matches gfx-hal.
Make the hub abstraction connect to the mux, rather than directly to the
Vulkan back-end.
As of this commit, both command line and winit examples work (on
Vulkan). In theory it should be possible to get them working on Dx12 as
well by translating the shader code, but there's a lot that can go
wrong.
This commit also contains a bunch of changes to mux to make conditional
compilation of match arms work, and new methods to support swapchain.
Adds a new "mux" module which can have multiple backends. As of this
commit, it's not wired up at all, but the functionality should be
reasonably complete.
Minor tweaks to the backend trait to accommodate this, mostly changing
Fence and Semaphore to references so they don't need to be Copy.
Part of the work toward #95
Add a method to create a buffer with initial content, which requires
staging buffers under the hood.
This patch also changes the lower-level (Vulkan) interface to be closer
to the raw Vulkan call.
These function, but can use some work.
First, the buffer situation is worse than it should be. It should be
possible to create a single readback buffer rather then copy from
gpu-local to host-coherent.
Second, the command buffer `finish_timestamps` call doesn't correlate to
anything in Vulkan, so needs plumbing up through the hub in one form or
other when that happens. I'm inclined to make it ergonomic by doing a
bit of resource tracking that will trigger the appropriate call (and
subsequent host barrier) in the `finish` method on the command buffer.
Create compute pipelines from shader source and descriptor sets. This
gets it to the point where it can run the collatz example.
Still WIP and with rough edges, of course.
Chipping away at the dx12 backend. This should more or less do the
signalling to the CPU that the command buffer is done (ie wire up the
fence). It also creates buffer objects.
The hub does a little better lifetime tracking of resources (so
Rust-side references can be dropped), and in the future will be used for
dynamic selection of backend.
The migration is still a bit half-baked, as there are a bunch of
Vulkan-specific types in the signatures, but it shouldn't be too much
work to sort that out. Perhaps it can wait until there is a second
backend though.
The main motivation for this is to create image objects with lifetime
tracking, one of the things required for #38.
Update to latest versions of all dependencies. Among other things, this
gets us on piet 0.2, though almost all of the changes were around text,
which is not yet implemented.