* Add blend and composition mode enums to API
* Mirror these in the shaders
* Add new public blend function to PietGpuRenderContext that mirrors clip
* Plumb the modes through the pipeline from scene to kernel4
This PR reworks the clip implementation. The highlight is that clip bounding box accounting is now done on GPU rather than CPU. The clip mask is also rasterized on EndClip rather than BeginClip, which decreases memory traffic needed for the clip stack.
This is a pretty good working state, but not all cleanup has been applied. An important next step is to remove the CPU clip accounting (it is computed and encoded, but that result is not used). Another step is to remove the Annotated structure entirely.
Fixes#88. Also relevant to #119
Separate out render context upload from renderer creation. Upload ramps
to GPU buffer. Encode gradients to scene description. Fix a number of
bugs in uploading and processing.
This renders gradients in a test image, but has some shortcomings. For
one, staging buffers need to be applied for a couple things (they're
just host mapped for now). Also, the interaction between sRGB and
premultiplied alpha isn't quite right. The size of the gradient ramp
buffer is fixed and should be dynamic.
And of course there's always more optimization to be done, including
making the upload of gradient ramps more incremental, and probably
hashing of the stops instead of the processed ramps.
WIP. Most of the GPU-side work should be done (though it's not tested
end-to-end and it's certainly possible I missed something), but still
needs work on encoding side.
The compute shaders have a check for the succesful completion of their
preceding stage. However, consider a shader execution path like the
following:
void main()
if (mem_error != NO_ERROR) {
return;
}
...
malloc(...);
...
barrier();
...
}
and shader execution that fails to allocate memory, thereby setting
mem_error to ERR_MALLOC_FAILED in malloc before reaching the barrier. If
another shader execution then begins execution, its mem_eror check will
make it return early and not reach the barrier.
All GPU APIs require (dynamically) uniform control flow for barriers,
and the above case may lead to GPU hangs in practice.
Fix this issue by replacing the early exits with careful checks that
don't interrupt barrier control flow.
Unfortunately, it's harder to prove the soundness of the new checks, so
this change also clears dynamic memory ranges in MEM_DEBUG mode when
memory is exhausted. The result is that accessing memory after
exhaustion triggers an error.
Signed-off-by: Elias Naur <mail@eliasnaur.com>
coarse.comp knows the maximum stack depth, and can pre-allocate scratch
space for kernel4.comp. Kernel4 no longer contains allocations nor
control barriers.
The invocation local blend stack is gone as well; it didn't seem to make
any difference in performance to always use global memory for pushing
and popping.
Signed-off-by: Elias Naur <mail@eliasnaur.com>
Reclaims the space waste from splitting fill mode commands from fill
commands.
For example, a CmdStroke + CmdColor use an extra tag word compared to
the former combined CmdStroke. This change shaves off that one word.
In the future, we can pack several command tags into one tag word,
saving even more space.
Fixes#66
Signed-off-by: Elias Naur <mail@eliasnaur.com>
This change completes general support for stroked fills for clips and
images.
Annotated_size increases from 28 to 32, because of the linewidth field
added to AnnoImage. Stroked image fills are presumably rare, and if
memory pressure turns out to be a bottleneck, we could replace the
linewidth field with a separate AnnoLinewidth elements.
Updates #70
Signed-off-by: Elias Naur <mail@eliasnaur.com>
Before this change, every command (FillColor, FillImage, BeginClip)
had (or would need) stroke, (non-zero) fill and solid variants.
This change adds a command for each fill mode and their parameters,
reducing code duplication and adds support for stroked FillImage and
BeginClip as a side-effect.
The rest of the pipeline doesn't yet support Stroked FillImage and
BeginClip. That's a follow-up change.
Since each command includes a tag, this change adds an extra word for
each fill and stroke. That waste is also addressed in a follow-up.
Updates #70
Signed-off-by: Elias Naur <mail@eliasnaur.com>
Commit 9afa9b86b6 added Rust support for
encoding flags into elements. This change adds support to shaders by
introducing variant tag structs:
struct VariantTag {
uint tag;
uint flags;
}
and returning them from Variant_tag functions.
It also adds a flags argument to write functions for enum variants that
include TagFlags.
No functionality changes.
Updates #70
Signed-off-by: Elias Naur <mail@eliasnaur.com>
FillImage is like Fill, except that it takes its color from one or
more image atlases.
kernel4 uses a single image for non-Vulkan hosts, and the dynamic sized array
of image descriptors on Vulkan.
A previous version of this commit used textures. I think images are a better
choice for piet-gpu, for several reasons:
- Texture sampling, in particular textureGrad, is slow on lower spec devices
such as Google Pixel. Texture sampling is particularly slow and difficult to
implement for CPU fallbacks.
- Texture sampling need more parameters, in particular the full u,v
transformation matrix, leading to a large increase in the command size. Since
all commands use the same size, that memory penalty is paid by all scenes, not
just scenes with textures.
- It is unlikely that piet-gpu will support every kind of fill for every
client, because each kind must be added to kernel4.
With FillImage, a client will prepare the image(s) in separate shader stages,
sampling and applying transformations and special effects as needed. Textures
that align with the output pixel grid can be used directly, without
pre-processing.
Note that the pre-processing step can run concurrently with the piet-gpu pipeline;
Only the last stage, kernel4, needs the images.
Pre-processing most likely uses fixed function vertex/fragment programs,
which on some GPUs may run in parallel with piet-gpu's compute programs.
While here, fix a few validation errors:
- Explicitly enable EXT_descriptor_indexing, KHR_maintenance3,
KHR_get_physical_device_properties2.
- Specify a vkDescriptorSetVariableDescriptorCountAllocateInfo for
vkAllocateDescriptorSets. Otherwise, variable image2D arrays won't work (but
sampler2D arrays do, at least on my setup).
Updates #38
Signed-off-by: Elias Naur <mail@eliasnaur.com>
Defining MEM_DEBUG in mem.h will add a size field to Alloc and enable
bounds and alignment checks for every memory read and write.
Notes:
- Deriving an Alloc from Path.tiles is unsound, but it's more trouble to
convert Path.tiles from TileRef to a variable sized Alloc.
- elements.comp note that "We should be able to use an array of structs but the
NV shader compiler doesn't seem to like it". If that's still relevant, does
the shared arrays of Allocs work?
Signed-off-by: Elias Naur <mail@eliasnaur.com>
The binning shader supports up to N_TILE bins. To efficiently cover wide or
tall viewports, convert the rigid N_TILE_X x N_TILE_Y bin layout to a variable
width_in_bins x height_in_bins layout.
Signed-off-by: Elias Naur <mail@eliasnaur.com>
If WIDTH_IN_TILES or HEIGHT_IN_TILES are not divisible by N_TILE_X or N_TILE_Y
respectively, the previously unconditional Cmd_End_write would write out of
bounds.
Signed-off-by: Elias Naur <mail@eliasnaur.com>
Merge all static and dynamic buffers to just one, "memory". Add a malloc
function for dynamic allocations.
Unify static allocation offsets into a "config" buffer containing scene setup
(number of paths, number of path segments), as well as the memory offsets of
the static allocations.
Finally, set an overflow flag when an allocation fail, and make sure to exit
shader execution as soon as that triggers. Add checks before beginning
execution in case the client wants to run two or more shaders before checking
the flag.
The "state" buffer is left alone because it needs zero'ing and because it is
accessed with the "volatile" keyword.
Fixes#40
Signed-off-by: Elias Naur <mail@eliasnaur.com>
I realized there's a problem with encoding clip bboxes relative to the
current transform (see #36 for a more detailed explanation), so this is
changing it to absolute bboxes.
This more or less gets clips working. There are optimization
opportunities (all-clear and all-opaque mask tiles), and it doesn't deal
with overflow of the blend stack, but it seems to basically work.
Expand the the final kernel4 stage to maintain a per-pixel mask.
Introduce two new path elements, FillMask and FillMaskInv, to fill
the mask. FillMask acts like Fill, while FillMaskInv fills the area
outside the path.
SVG clipPaths is then representable by a FillMaskInv(0.0) for every nested
path, preceded by a FillMask(1.0) to clear the mask.
The bounding box for FillMaskInv elements is the entire screen; tightening of
the bounding box is left for future work. Note that a fullscreen bounding
box is not hopelessly inefficient because completely filling a tile with
a mask is just a single CmdSolidMask per tile.
Fixes#30
Signed-off-by: Elias Naur <mail@eliasnaur.com>
Both the Vulkan and OpenGL ES spec allow implementations to limit workgroups to
128 threads. Add a LG_WG_FACTOR setting for easy switching between 128 and 256
threads, with 256 being kept as the default setting.
Manually tested that LG_WG_FACTOR = 0 (128 threads) works as expected.
Signed-off-by: Elias Naur <mail@eliasnaur.com>
Have a more-parallel read of the tile structures based on bbox coverage,
and only set the bit when the tile isn't empty.
This is a speedup, but there is some duplicated work and it is possible
to improve it further.
Another speedup might be to special-case when the number of chunks in a
stroke or fill command is 1, then the segment header doesn't need
allocation and memory traffic is reduced. But right now we'll avoid the
complexity.
Coarse rasterization wasn't entirely taking line width into account.
Also fix swizzle in matrix (not yet used). And fix missing End command
in ptcl output (hasn't been a problem because buffer was cleared).
Trying to fit it into the fancy monad doesn't really work, so use a
more straightforward approach to compute it from the aggregate.
Also add yEdge logic (basically copying piet-metal). With a fix to
ELEMENT_BINNING_RATIO (which I had simply gotten wrong), the example
renders almost correctly, with small bounding box artifacts.