Adds a new "mux" module which can have multiple backends. As of this
commit, it's not wired up at all, but the functionality should be
reasonably complete.
Minor tweaks to the backend trait to accommodate this, mostly changing
Fence and Semaphore to references so they don't need to be Copy.
Part of the work toward #95
Use an enum instead of Box<dyn Any> for resources to be retained until
command buffer completion, and allow both references (which will be
cloned) and owned resources (useful for staging buffers).
Add a method to create a buffer with initial content, which requires
staging buffers under the hood.
This patch also changes the lower-level (Vulkan) interface to be closer
to the raw Vulkan call.
Test whether the GPU supports subgroups (including size control) and
memory model.
This patch does all the ceremony needed for runtime query, including
testing the Vulkan version and only probing the extensions when
available. Thus, it should work fine on older devices (not yet tested).
The reporting of capabilities follows Vulkan concepts, but is not
particularly Vulkan-specific.
Don't run extensions unless they're available. This includes querying
for descriptor indexing, and running one of two versions of kernel4
depending on whether it's enabled.
Part of the support needed for #78
FillImage is like Fill, except that it takes its color from one or
more image atlases.
kernel4 uses a single image for non-Vulkan hosts, and the dynamic sized array
of image descriptors on Vulkan.
A previous version of this commit used textures. I think images are a better
choice for piet-gpu, for several reasons:
- Texture sampling, in particular textureGrad, is slow on lower spec devices
such as Google Pixel. Texture sampling is particularly slow and difficult to
implement for CPU fallbacks.
- Texture sampling need more parameters, in particular the full u,v
transformation matrix, leading to a large increase in the command size. Since
all commands use the same size, that memory penalty is paid by all scenes, not
just scenes with textures.
- It is unlikely that piet-gpu will support every kind of fill for every
client, because each kind must be added to kernel4.
With FillImage, a client will prepare the image(s) in separate shader stages,
sampling and applying transformations and special effects as needed. Textures
that align with the output pixel grid can be used directly, without
pre-processing.
Note that the pre-processing step can run concurrently with the piet-gpu pipeline;
Only the last stage, kernel4, needs the images.
Pre-processing most likely uses fixed function vertex/fragment programs,
which on some GPUs may run in parallel with piet-gpu's compute programs.
While here, fix a few validation errors:
- Explicitly enable EXT_descriptor_indexing, KHR_maintenance3,
KHR_get_physical_device_properties2.
- Specify a vkDescriptorSetVariableDescriptorCountAllocateInfo for
vkAllocateDescriptorSets. Otherwise, variable image2D arrays won't work (but
sampler2D arrays do, at least on my setup).
Updates #38
Signed-off-by: Elias Naur <mail@eliasnaur.com>
Provide images to fine rasterization kernel as readonly textures with a
sampler, rather than storage images. That lets us use the GPU's hardware
for sampling, which should be considerably more efficient.
There are a bunch of parameters that are hardcoded, but it does seem to
work.
This patch passes a dynamically sized array of textures to the fine
rasterizer.
A bunch of the low level Vulkan stuff is done, but only enough of the
shaders and encoders to do minimal testing. We'll want to switch from
storage images to sampled images, track the actual array of textures
during encoding, use that to build the descriptor set (which will need
to be more dynamic), and of course run image elements through the
pipeline.
Progress towards #38
The hub does a little better lifetime tracking of resources (so
Rust-side references can be dropped), and in the future will be used for
dynamic selection of backend.
The migration is still a bit half-baked, as there are a bunch of
Vulkan-specific types in the signatures, but it shouldn't be too much
work to sort that out. Perhaps it can wait until there is a second
backend though.
The main motivation for this is to create image objects with lifetime
tracking, one of the things required for #38.