// The coarse rasterizer stage of the pipeline. #version 450 #extension GL_GOOGLE_include_directive : enable #include "setup.h" layout(local_size_x = N_TILE, local_size_y = 1) in; layout(set = 0, binding = 0) buffer AnnotatedBuf { uint[] annotated; }; layout(set = 0, binding = 1) buffer BinsBuf { uint[] bins; }; layout(set = 0, binding = 2) buffer AllocBuf { uint alloc; }; layout(set = 0, binding = 3) buffer PtclBuf { uint[] ptcl; }; #include "annotated.h" #include "bins.h" #include "ptcl.h" #define N_RINGBUF 512 shared uint sh_elements[N_RINGBUF]; shared uint sh_chunk[N_WG]; shared uint sh_chunk_next[N_WG]; shared uint sh_chunk_n[N_WG]; shared uint sh_min_buf; // Some of these are kept in shared memory to ease register // pressure, but it could go either way. shared uint sh_first_el[N_WG]; shared uint sh_selected_n; shared uint sh_elements_ref; shared uint sh_bitmaps[N_SLICE][N_TILE]; // scale factors useful for converting coordinates to tiles #define SX (1.0 / float(TILE_WIDTH_PX)) #define SY (1.0 / float(TILE_HEIGHT_PX)) // Perhaps cmd_limit should be a global? This is a style question. void alloc_cmd(inout CmdRef cmd_ref, inout uint cmd_limit) { if (cmd_ref.offset > cmd_limit) { uint new_cmd = atomicAdd(alloc, PTCL_INITIAL_ALLOC); CmdJump jump = CmdJump(new_cmd); Cmd_Jump_write(cmd_ref, jump); cmd_ref = CmdRef(new_cmd); cmd_limit = new_cmd + PTCL_INITIAL_ALLOC - 2 * Cmd_size; } } // Ensure that there is space to encode a segment. void alloc_chunk(inout uint chunk_n_segs, inout SegChunkRef seg_chunk_ref, inout SegChunkRef first_seg_chunk, inout uint seg_limit) { // TODO: Reduce divergence of atomic alloc? if (chunk_n_segs == 0) { if (seg_chunk_ref.offset + 40 > seg_limit) { seg_chunk_ref.offset = atomicAdd(alloc, SEG_CHUNK_ALLOC); seg_limit = seg_chunk_ref.offset + SEG_CHUNK_ALLOC - Segment_size; } first_seg_chunk = seg_chunk_ref; } else if (seg_chunk_ref.offset + SegChunk_size + Segment_size * chunk_n_segs > seg_limit) { uint new_chunk_ref = atomicAdd(alloc, SEG_CHUNK_ALLOC); seg_limit = new_chunk_ref + SEG_CHUNK_ALLOC - Segment_size; SegChunk_write(seg_chunk_ref, SegChunk(chunk_n_segs, SegChunkRef(new_chunk_ref))); seg_chunk_ref.offset = new_chunk_ref; chunk_n_segs = 0; } } void main() { // Could use either linear or 2d layouts for both dispatch and // invocations within the workgroup. We'll use variables to abstract. uint bin_ix = N_TILE_X * gl_WorkGroupID.y + gl_WorkGroupID.x; // Top left coordinates of this bin. vec2 xy0 = vec2(N_TILE_X * TILE_WIDTH_PX * gl_WorkGroupID.x, N_TILE_Y * TILE_HEIGHT_PX * gl_WorkGroupID.y); uint th_ix = gl_LocalInvocationID.x; uint tile_x = N_TILE_X * gl_WorkGroupID.x + gl_LocalInvocationID.x % N_TILE_X; uint tile_y = N_TILE_Y * gl_WorkGroupID.y + gl_LocalInvocationID.x / N_TILE_X; uint tile_ix = tile_y * WIDTH_IN_TILES + tile_x; CmdRef cmd_ref = CmdRef(tile_ix * PTCL_INITIAL_ALLOC); uint cmd_limit = cmd_ref.offset + PTCL_INITIAL_ALLOC - 2 * Cmd_size; // Allocation and management of segment output SegChunkRef seg_chunk_ref = SegChunkRef(0); SegChunkRef first_seg_chunk = SegChunkRef(0); uint seg_limit = 0; uint chunk_n_segs = 0; uint wr_ix = 0; uint rd_ix = 0; uint first_el; if (th_ix < N_WG) { uint start_chunk = (bin_ix * N_WG + th_ix) * BIN_INITIAL_ALLOC; sh_chunk[th_ix] = start_chunk; BinChunk chunk = BinChunk_read(BinChunkRef(start_chunk)); sh_chunk_n[th_ix] = chunk.n; sh_chunk_next[th_ix] = chunk.next.offset; sh_first_el[th_ix] = chunk.n > 0 ? BinInstance_read(BinInstanceRef(start_chunk + BinChunk_size)).element_ix : ~0; } uint count = 0; while (true) { for (uint i = 0; i < N_SLICE; i++) { sh_bitmaps[i][th_ix] = 0; } while (wr_ix - rd_ix <= N_TILE) { // Choose segment with least element. uint my_min; if (th_ix < N_WG) { if (th_ix == 0) { sh_selected_n = 0; sh_min_buf = ~0; } } barrier(); // Tempting to do this with subgroups, but atomic should be good enough. if (th_ix < N_WG) { my_min = sh_first_el[th_ix]; atomicMin(sh_min_buf, my_min); } barrier(); if (th_ix < N_WG) { if (my_min == sh_min_buf && my_min != ~0) { sh_elements_ref = sh_chunk[th_ix] + BinChunk_size; uint selected_n = sh_chunk_n[th_ix]; sh_selected_n = selected_n; uint next_chunk = sh_chunk_next[th_ix]; if (next_chunk == 0) { sh_first_el[th_ix] = ~0; } else { sh_chunk[th_ix] = next_chunk; BinChunk chunk = BinChunk_read(BinChunkRef(next_chunk)); sh_chunk_n[th_ix] = chunk.n; sh_chunk_next[th_ix] = chunk.next.offset; sh_first_el[th_ix] = BinInstance_read( BinInstanceRef(next_chunk + BinChunk_size)).element_ix; } } } barrier(); uint chunk_n = sh_selected_n; if (chunk_n == 0) { // All chunks consumed break; } BinInstanceRef inst_ref = BinInstanceRef(sh_elements_ref); if (th_ix < chunk_n) { uint el = BinInstance_read(BinInstance_index(inst_ref, th_ix)).element_ix; sh_elements[(wr_ix + th_ix) % N_RINGBUF] = el; } wr_ix += chunk_n; } barrier(); // We've done the merge and filled the buffer. // Read one element, compute coverage. uint tag = Annotated_Nop; AnnotatedRef ref; if (th_ix + rd_ix < wr_ix) { uint element_ix = sh_elements[(rd_ix + th_ix) % N_RINGBUF]; ref = AnnotatedRef(element_ix * Annotated_size); tag = Annotated_tag(ref); } // Setup for coverage algorithm. float a, b, c; // Bounding box of element in pixel coordinates. float xmin, xmax, ymin, ymax; switch (tag) { case Annotated_Line: AnnoLineSeg line = Annotated_Line_read(ref); xmin = min(line.p0.x, line.p1.x) - line.stroke.x; xmax = max(line.p0.x, line.p1.x) + line.stroke.x; ymin = min(line.p0.y, line.p1.y) - line.stroke.y; ymax = max(line.p0.y, line.p1.y) + line.stroke.y; float dx = line.p1.x - line.p0.x; float dy = line.p1.y - line.p0.y; // Set up for per-scanline coverage formula, below. float invslope = abs(dy) < 1e-9 ? 1e9 : dx / dy; c = abs(invslope) * (0.5 * float(TILE_HEIGHT_PX) + line.stroke.y) * SX; b = invslope; // Note: assumes square tiles, otherwise scale. a = (line.p0.x - xy0.x - (line.p0.y - 0.5 * float(TILE_HEIGHT_PX) - xy0.y) * b) * SX; break; case Annotated_Fill: case Annotated_Stroke: // Note: we take advantage of the fact that fills and strokes // have compatible layout. AnnoFill fill = Annotated_Fill_read(ref); xmin = fill.bbox.x; xmax = fill.bbox.z; ymin = fill.bbox.y; ymax = fill.bbox.w; // Just let the clamping to xmin and xmax determine the bounds. a = 0.0; b = 0.0; c = 1e9; break; default: ymin = 0; ymax = 0; break; } // Draw the coverage area into the bitmaks. This uses an algorithm // that computes the coverage of a span for given scanline. // Compute bounding box in tiles and clip to this bin. int x0 = int(floor((xmin - xy0.x) * SX)); int x1 = int(ceil((xmax - xy0.x) * SX)); int y0 = int(floor((ymin - xy0.y) * SY)); int y1 = int(ceil((ymax - xy0.y) * SY)); x0 = clamp(x0, 0, N_TILE_X); x1 = clamp(x1, x0, N_TILE_X); y0 = clamp(y0, 0, N_TILE_Y); y1 = clamp(y1, y0, N_TILE_Y); uint my_slice = th_ix / 32; uint my_mask = 1 << (th_ix & 31); float t = a + b * float(y0); for (uint y = y0; y < y1; y++) { uint xx0 = clamp(int(floor(t - c)), x0, x1); uint xx1 = clamp(int(ceil(t + c)), x0, x1); for (uint x = xx0; x < xx1; x++) { atomicOr(sh_bitmaps[my_slice][y * N_TILE_X + x], my_mask); } t += b; } barrier(); // Output elements for this tile, based on bitmaps. uint slice_ix = 0; uint bitmap = sh_bitmaps[0][th_ix]; while (true) { if (bitmap == 0) { slice_ix++; if (slice_ix == N_SLICE) { break; } bitmap = sh_bitmaps[slice_ix][th_ix]; if (bitmap == 0) { continue; } } uint element_ref_ix = slice_ix * 32 + findLSB(bitmap); uint element_ix = sh_elements[(rd_ix + element_ref_ix) % N_RINGBUF]; // At this point, we read the element again from global memory. // If that turns out to be expensive, maybe we can pack it into // shared memory (or perhaps just the tag). ref = AnnotatedRef(element_ix * Annotated_size); tag = Annotated_tag(ref); switch (tag) { case Annotated_Line: AnnoLineSeg line = Annotated_Line_read(ref); Segment seg = Segment(line.p0, line.p1); alloc_chunk(chunk_n_segs, seg_chunk_ref, first_seg_chunk, seg_limit); Segment_write(SegmentRef(seg_chunk_ref.offset + SegChunk_size + Segment_size * chunk_n_segs), seg); chunk_n_segs++; break; case Annotated_Fill: chunk_n_segs = 0; break; case Annotated_Stroke: if (chunk_n_segs > 0) { AnnoStroke stroke = Annotated_Stroke_read(ref); SegChunk_write(seg_chunk_ref, SegChunk(chunk_n_segs, SegChunkRef(0))); seg_chunk_ref.offset += SegChunk_size + Segment_size * chunk_n_segs; CmdStroke cmd_stroke; cmd_stroke.seg_ref = first_seg_chunk.offset; cmd_stroke.half_width = 0.5 * stroke.linewidth; cmd_stroke.rgba_color = stroke.rgba_color; alloc_cmd(cmd_ref, cmd_limit); Cmd_Stroke_write(cmd_ref, cmd_stroke); cmd_ref.offset += Cmd_size; chunk_n_segs = 0; } break; } // clear LSB bitmap &= bitmap - 1; } barrier(); rd_ix += N_TILE; // The second disjunct is there as a strange workaround on Nvidia. If it is // removed, then the kernel fails with ERROR_DEVICE_LOST. if (rd_ix >= wr_ix || bin_ix == ~0) break; } }