// The binning stage of the pipeline. #version 450 #extension GL_GOOGLE_include_directive : enable #include "setup.h" layout(local_size_x = N_TILE, local_size_y = 1) in; layout(set = 0, binding = 0) buffer AnnotatedBuf { uint[] annotated; }; layout(set = 0, binding = 1) buffer AllocBuf { uint n_elements; // Will be incremented atomically to claim tiles uint tile_ix; uint alloc; }; layout(set = 0, binding = 2) buffer BinsBuf { uint[] bins; }; #include "annotated.h" #include "bins.h" // scale factors useful for converting coordinates to bins #define SX (1.0 / float(N_TILE_X * TILE_WIDTH_PX)) #define SY (1.0 / float(N_TILE_Y * TILE_HEIGHT_PX)) // Note: cudaraster has N_TILE + 1 to cut down on bank conflicts. shared uint bitmaps[N_SLICE][N_TILE]; shared uint count[N_SLICE][N_TILE]; shared uint sh_my_tile; shared uint sh_chunk_start[N_TILE]; shared uint sh_chunk_end[N_TILE]; shared uint sh_chunk_jump[N_TILE]; void main() { BinChunkRef chunk_ref = BinChunkRef((gl_LocalInvocationID.x * N_WG + gl_WorkGroupID.x) * BIN_INITIAL_ALLOC); uint wr_limit = chunk_ref.offset + BIN_INITIAL_ALLOC; uint chunk_n = 0; uint my_n_elements = n_elements; while (true) { if (gl_LocalInvocationID.x == 0) { sh_my_tile = atomicAdd(tile_ix, 1); } barrier(); uint my_tile = sh_my_tile; if (my_tile * N_TILE >= my_n_elements) { break; } for (uint i = 0; i < N_SLICE; i++) { bitmaps[i][gl_LocalInvocationID.x] = 0; } barrier(); // Read inputs and determine coverage of bins uint element_ix = my_tile * N_TILE + gl_LocalInvocationID.x; AnnotatedRef ref = AnnotatedRef(element_ix * Annotated_size); uint tag = Annotated_Nop; if (element_ix < my_n_elements) { tag = Annotated_tag(ref); } int x0 = 0, y0 = 0, x1 = 0, y1 = 0; switch (tag) { case Annotated_Line: AnnoLineSeg line = Annotated_Line_read(ref); x0 = int(floor((min(line.p0.x, line.p1.x) - line.stroke.x) * SX)); y0 = int(floor((min(line.p0.y, line.p1.y) - line.stroke.y) * SY)); x1 = int(ceil((max(line.p0.x, line.p1.x) + line.stroke.x) * SX)); y1 = int(ceil((max(line.p0.y, line.p1.y) + line.stroke.y) * SY)); break; case Annotated_Fill: case Annotated_Stroke: // Note: we take advantage of the fact that fills and strokes // have compatible layout. AnnoFill fill = Annotated_Fill_read(ref); x0 = int(floor(fill.bbox.x * SX)); y0 = int(floor(fill.bbox.y * SY)); x1 = int(ceil(fill.bbox.z * SX)); y1 = int(ceil(fill.bbox.w * SY)); break; } // At this point, we run an iterator over the coverage area, // trying to keep divergence low. // Right now, it's just a bbox, but we'll get finer with // segments. x0 = clamp(x0, 0, N_TILE_X); x1 = clamp(x1, x0, N_TILE_X); y0 = clamp(y0, 0, N_TILE_Y); y1 = clamp(y1, y0, N_TILE_Y); if (x0 == x1) y1 = y0; int x = x0, y = y0; uint my_slice = gl_LocalInvocationID.x / 32; uint my_mask = 1 << (gl_LocalInvocationID.x & 31); while (y < y1) { atomicOr(bitmaps[my_slice][y * N_TILE_X + x], my_mask); x++; if (x == x1) { x = x0; y++; } } barrier(); // Allocate output segments. uint element_count = 0; for (uint i = 0; i < N_SLICE; i++) { element_count += bitCount(bitmaps[i][gl_LocalInvocationID.x]); count[i][gl_LocalInvocationID.x] = element_count; } // element_count is number of elements covering bin for this invocation. if (element_count != 0) { uint chunk_end; uint chunk_new_start; // Refactor to reduce code duplication? if (chunk_n > 0) { uint next_chunk = chunk_ref.offset + BinChunk_size + chunk_n * 4; if (next_chunk + BinChunk_size + min(24, element_count * 4) > wr_limit) { uint alloc_amount = max(BIN_ALLOC, BinChunk_size + element_count * 4); // could try to reduce fragmentation if BIN_ALLOC is only a bit above needed next_chunk = atomicAdd(alloc, alloc_amount); wr_limit = next_chunk + alloc_amount; } BinChunk_write(chunk_ref, BinChunk(chunk_n, BinChunkRef(next_chunk))); chunk_ref = BinChunkRef(next_chunk); } BinInstanceRef instance_ref = BinInstanceRef(chunk_ref.offset + BinChunk_size); if (instance_ref.offset + element_count * 4 > wr_limit) { chunk_end = wr_limit; chunk_n = (wr_limit - instance_ref.offset) / 4; uint alloc_amount = max(BIN_ALLOC, BinChunk_size + (element_count - chunk_n) * 4); chunk_new_start = atomicAdd(alloc, alloc_amount); wr_limit = chunk_new_start + alloc_amount; BinChunk_write(chunk_ref, BinChunk(chunk_n, BinChunkRef(chunk_new_start))); chunk_ref = BinChunkRef(chunk_new_start); chunk_new_start += BinChunk_size; chunk_n = element_count - chunk_n; } else { chunk_end = ~0; chunk_n = element_count; } sh_chunk_start[gl_LocalInvocationID.x] = instance_ref.offset; sh_chunk_end[gl_LocalInvocationID.x] = chunk_end; sh_chunk_jump[gl_LocalInvocationID.x] = chunk_new_start - chunk_end; } barrier(); // Use similar strategy as Laine & Karras paper; loop over bbox of bins // touched by this element x = x0; y = y0; while (y < y1) { uint bin_ix = y * N_TILE_X + x; uint out_mask = bitmaps[my_slice][bin_ix]; if ((out_mask & my_mask) != 0) { uint idx = bitCount(out_mask & (my_mask - 1)); if (my_slice > 0) { idx += count[my_slice - 1][bin_ix]; } uint out_offset = sh_chunk_start[bin_ix] + idx * 4; if (out_offset >= sh_chunk_end[bin_ix]) { out_offset += sh_chunk_jump[bin_ix]; } BinInstance_write(BinInstanceRef(out_offset), BinInstance(element_ix)); } x++; if (x == x1) { x = x0; y++; } } } BinChunk_write(chunk_ref, BinChunk(chunk_n, BinChunkRef(0))); }