// The binning stage of the pipeline. #version 450 #extension GL_GOOGLE_include_directive : enable #include "setup.h" layout(local_size_x = N_TILE, local_size_y = 1) in; layout(set = 0, binding = 0) buffer AnnotatedBuf { uint[] annotated; }; // This is for scanning forward for right_edge data. layout(set = 0, binding = 1) buffer StateBuf { uint[] state; }; layout(set = 0, binding = 2) buffer AllocBuf { uint n_elements; // Will be incremented atomically to claim tiles uint tile_ix; uint alloc; }; layout(set = 0, binding = 3) buffer BinsBuf { uint[] bins; }; #include "annotated.h" #include "state.h" #include "bins.h" // scale factors useful for converting coordinates to bins #define SX (1.0 / float(N_TILE_X * TILE_WIDTH_PX)) #define SY (1.0 / float(N_TILE_Y * TILE_HEIGHT_PX)) #define TSY (1.0 / float(TILE_HEIGHT_PX)) // Constant not available in GLSL. Also consider uintBitsToFloat(0x7f800000) #define INFINITY (1.0 / 0.0) // Note: cudaraster has N_TILE + 1 to cut down on bank conflicts. shared uint bitmaps[N_SLICE][N_TILE]; shared uint count[N_SLICE][N_TILE]; shared uint sh_chunk_start[N_TILE]; shared float sh_right_edge[N_TILE]; #define StateBuf_stride (8 + 2 * State_size) uint state_right_edge_index(uint partition_ix) { return 2 + partition_ix * (StateBuf_stride / 4); } void main() { uint chunk_n = 0; uint my_n_elements = n_elements; uint my_partition = gl_WorkGroupID.x; for (uint i = 0; i < N_SLICE; i++) { bitmaps[i][gl_LocalInvocationID.x] = 0; } barrier(); // Read inputs and determine coverage of bins uint element_ix = my_partition * N_TILE + gl_LocalInvocationID.x; AnnotatedRef ref = AnnotatedRef(element_ix * Annotated_size); uint tag = Annotated_Nop; if (element_ix < my_n_elements) { tag = Annotated_tag(ref); } int x0 = 0, y0 = 0, x1 = 0, y1 = 0; float my_right_edge = INFINITY; bool crosses_edge = false; switch (tag) { case Annotated_FillLine: case Annotated_StrokeLine: AnnoStrokeLineSeg line = Annotated_StrokeLine_read(ref); x0 = int(floor((min(line.p0.x, line.p1.x) - line.stroke.x) * SX)); y0 = int(floor((min(line.p0.y, line.p1.y) - line.stroke.y) * SY)); x1 = int(ceil((max(line.p0.x, line.p1.x) + line.stroke.x) * SX)); y1 = int(ceil((max(line.p0.y, line.p1.y) + line.stroke.y) * SY)); crosses_edge = tag == Annotated_FillLine && ceil(line.p0.y * TSY) != ceil(line.p1.y * TSY); break; case Annotated_Fill: case Annotated_Stroke: // Note: we take advantage of the fact that fills and strokes // have compatible layout. AnnoFill fill = Annotated_Fill_read(ref); x0 = int(floor(fill.bbox.x * SX)); y0 = int(floor(fill.bbox.y * SY)); x1 = int(ceil(fill.bbox.z * SX)); y1 = int(ceil(fill.bbox.w * SY)); // It probably makes more sense to track x1, to avoid having to redo // the rounding to tile coords. my_right_edge = fill.bbox.z; break; } // If the last element in this partition is a fill edge, then we need to do a // look-forward to find the right edge of its corresponding fill. That data is // recorded in aggregates computed in the element processing pass. if (gl_LocalInvocationID.x == N_TILE - 1 && tag == Annotated_FillLine) { uint aggregate_ix = (my_partition + 1) * ELEMENT_BINNING_RATIO; // This is sequential but the expectation is that the amount of // look-forward is small (performance may degrade in the case // of massively complex paths). do { my_right_edge = uintBitsToFloat(state[state_right_edge_index(aggregate_ix)]); aggregate_ix++; } while (isinf(my_right_edge)); } // Now propagate right_edge backward, from fill to segment. for (uint i = 0; i < LG_N_TILE; i++) { // Note: we could try to cut down on write bandwidth here if the value hasn't // changed, but not sure it's worth the complexity to track. sh_right_edge[gl_LocalInvocationID.x] = my_right_edge; barrier(); if (gl_LocalInvocationID.x + (1 << i) < N_TILE && isinf(my_right_edge)) { my_right_edge = sh_right_edge[gl_LocalInvocationID.x + (1 << i)]; } barrier(); } if (crosses_edge) { x1 = int(ceil(my_right_edge * SX)); } // At this point, we run an iterator over the coverage area, // trying to keep divergence low. // Right now, it's just a bbox, but we'll get finer with // segments. x0 = clamp(x0, 0, N_TILE_X); x1 = clamp(x1, x0, N_TILE_X); y0 = clamp(y0, 0, N_TILE_Y); y1 = clamp(y1, y0, N_TILE_Y); if (x0 == x1) y1 = y0; int x = x0, y = y0; uint my_slice = gl_LocalInvocationID.x / 32; uint my_mask = 1 << (gl_LocalInvocationID.x & 31); while (y < y1) { atomicOr(bitmaps[my_slice][y * N_TILE_X + x], my_mask); x++; if (x == x1) { x = x0; y++; } } barrier(); // Allocate output segments. uint element_count = 0; for (uint i = 0; i < N_SLICE; i++) { element_count += bitCount(bitmaps[i][gl_LocalInvocationID.x]); count[i][gl_LocalInvocationID.x] = element_count; } // element_count is number of elements covering bin for this invocation. uint chunk_start = 0; if (element_count != 0) { // TODO: aggregate atomic adds (subgroup is probably fastest) chunk_start = atomicAdd(alloc, element_count * BinInstance_size); sh_chunk_start[gl_LocalInvocationID.x] = chunk_start; } // Note: it might be more efficient for reading to do this in the // other order (each bin is a contiguous sequence of partitions) uint out_ix = (my_partition * N_TILE + gl_LocalInvocationID.x) * 2; bins[out_ix] = element_count; bins[out_ix + 1] = chunk_start; barrier(); // Use similar strategy as Laine & Karras paper; loop over bbox of bins // touched by this element x = x0; y = y0; while (y < y1) { uint bin_ix = y * N_TILE_X + x; uint out_mask = bitmaps[my_slice][bin_ix]; if ((out_mask & my_mask) != 0) { uint idx = bitCount(out_mask & (my_mask - 1)); if (my_slice > 0) { idx += count[my_slice - 1][bin_ix]; } uint out_offset = sh_chunk_start[bin_ix] + idx * BinInstance_size; BinInstance_write(BinInstanceRef(out_offset), BinInstance(element_ix, my_right_edge)); } x++; if (x == x1) { x = x0; y++; } } }