// The coarse rasterizer stage of the pipeline. #version 450 #extension GL_GOOGLE_include_directive : enable #include "setup.h" layout(local_size_x = N_TILE, local_size_y = 1) in; layout(set = 0, binding = 0) buffer AnnotatedBuf { uint[] annotated; }; layout(set = 0, binding = 1) buffer BinsBuf { uint[] bins; }; layout(set = 0, binding = 2) buffer AllocBuf { uint alloc; }; layout(set = 0, binding = 3) buffer PtclBuf { uint[] ptcl; }; #include "annotated.h" #include "bins.h" #include "ptcl.h" #define N_RINGBUF 512 shared uint sh_elements[N_RINGBUF]; shared float sh_right_edge[N_RINGBUF]; shared uint sh_chunk[N_WG]; shared uint sh_chunk_next[N_WG]; shared uint sh_chunk_n[N_WG]; shared uint sh_min_buf; // Some of these are kept in shared memory to ease register // pressure, but it could go either way. shared uint sh_first_el[N_WG]; shared uint sh_selected_n; shared uint sh_elements_ref; shared uint sh_bitmaps[N_SLICE][N_TILE]; shared uint sh_backdrop[N_SLICE][N_TILE]; shared uint sh_bd_sign[N_SLICE]; shared uint sh_is_segment[N_SLICE]; // Shared state for parallel segment output stage // Count of total number of segments in each tile, then // inclusive prefix sum of same. shared uint sh_seg_count[N_TILE]; shared uint sh_orig_seg_count[N_TILE]; shared uint sh_seg_alloc; // scale factors useful for converting coordinates to tiles #define SX (1.0 / float(TILE_WIDTH_PX)) #define SY (1.0 / float(TILE_HEIGHT_PX)) // Perhaps cmd_limit should be a global? This is a style question. void alloc_cmd(inout CmdRef cmd_ref, inout uint cmd_limit) { if (cmd_ref.offset > cmd_limit) { uint new_cmd = atomicAdd(alloc, PTCL_INITIAL_ALLOC); CmdJump jump = CmdJump(new_cmd); Cmd_Jump_write(cmd_ref, jump); cmd_ref = CmdRef(new_cmd); cmd_limit = new_cmd + PTCL_INITIAL_ALLOC - 2 * Cmd_size; } } #define CHUNK_ALLOC_SLAB 16 uint alloc_chunk_remaining; uint alloc_chunk_offset; SegChunkRef alloc_seg_chunk() { if (alloc_chunk_remaining == 0) { alloc_chunk_offset = atomicAdd(alloc, CHUNK_ALLOC_SLAB * SegChunk_size); alloc_chunk_remaining = CHUNK_ALLOC_SLAB; } uint offset = alloc_chunk_offset; alloc_chunk_offset += SegChunk_size; alloc_chunk_remaining--; return SegChunkRef(offset); } // Accumulate delta to backdrop. // // Each bit for which bd_bitmap is 1 and bd_sign is 1 counts as +1, and each // bit for which bd_bitmap is 1 and bd_sign is 0 counts as -1. int count_backdrop(uint bd_bitmap, uint bd_sign) { return bitCount(bd_bitmap & bd_sign) - bitCount(bd_bitmap & ~bd_sign); } void main() { // Could use either linear or 2d layouts for both dispatch and // invocations within the workgroup. We'll use variables to abstract. uint bin_ix = N_TILE_X * gl_WorkGroupID.y + gl_WorkGroupID.x; // Top left coordinates of this bin. vec2 xy0 = vec2(N_TILE_X * TILE_WIDTH_PX * gl_WorkGroupID.x, N_TILE_Y * TILE_HEIGHT_PX * gl_WorkGroupID.y); uint th_ix = gl_LocalInvocationID.x; uint tile_x = N_TILE_X * gl_WorkGroupID.x + gl_LocalInvocationID.x % N_TILE_X; uint tile_y = N_TILE_Y * gl_WorkGroupID.y + gl_LocalInvocationID.x / N_TILE_X; uint tile_ix = tile_y * WIDTH_IN_TILES + tile_x; CmdRef cmd_ref = CmdRef(tile_ix * PTCL_INITIAL_ALLOC); uint cmd_limit = cmd_ref.offset + PTCL_INITIAL_ALLOC - 2 * Cmd_size; // Allocation and management of segment output SegChunkRef first_seg_chunk = SegChunkRef(0); SegChunkRef last_chunk_ref = SegChunkRef(0); uint last_chunk_n = 0; SegmentRef last_chunk_segs = SegmentRef(0); alloc_chunk_remaining = 0; uint wr_ix = 0; uint rd_ix = 0; uint first_el; if (th_ix < N_WG) { uint start_chunk = (bin_ix * N_WG + th_ix) * BIN_INITIAL_ALLOC; sh_chunk[th_ix] = start_chunk; BinChunk chunk = BinChunk_read(BinChunkRef(start_chunk)); sh_chunk_n[th_ix] = chunk.n; sh_chunk_next[th_ix] = chunk.next.offset; sh_first_el[th_ix] = chunk.n > 0 ? BinInstance_read(BinInstanceRef(start_chunk + BinChunk_size)).element_ix : ~0; } if (th_ix < N_SLICE) { sh_bd_sign[th_ix] = 0; } int backdrop = 0; while (true) { for (uint i = 0; i < N_SLICE; i++) { sh_bitmaps[i][th_ix] = 0; sh_backdrop[i][th_ix] = 0; sh_is_segment[th_ix] = 0; } while (wr_ix - rd_ix <= N_TILE) { // Choose segment with least element. uint my_min; if (th_ix < N_WG) { if (th_ix == 0) { sh_selected_n = 0; sh_min_buf = ~0; } } barrier(); // Tempting to do this with subgroups, but atomic should be good enough. if (th_ix < N_WG) { my_min = sh_first_el[th_ix]; atomicMin(sh_min_buf, my_min); } barrier(); if (th_ix < N_WG) { if (my_min == sh_min_buf && my_min != ~0) { sh_elements_ref = sh_chunk[th_ix] + BinChunk_size; uint selected_n = sh_chunk_n[th_ix]; sh_selected_n = selected_n; uint next_chunk = sh_chunk_next[th_ix]; if (next_chunk == 0) { sh_first_el[th_ix] = ~0; } else { sh_chunk[th_ix] = next_chunk; BinChunk chunk = BinChunk_read(BinChunkRef(next_chunk)); sh_chunk_n[th_ix] = chunk.n; sh_chunk_next[th_ix] = chunk.next.offset; sh_first_el[th_ix] = BinInstance_read( BinInstanceRef(next_chunk + BinChunk_size)).element_ix; } } } barrier(); uint chunk_n = sh_selected_n; if (chunk_n == 0) { // All chunks consumed break; } BinInstanceRef inst_ref = BinInstanceRef(sh_elements_ref); if (th_ix < chunk_n) { BinInstance inst = BinInstance_read(BinInstance_index(inst_ref, th_ix)); uint wr_el_ix = (wr_ix + th_ix) % N_RINGBUF; sh_elements[wr_el_ix] = inst.element_ix; sh_right_edge[wr_el_ix] = inst.right_edge; } wr_ix += chunk_n; } barrier(); // We've done the merge and filled the buffer. // Read one element, compute coverage. uint tag = Annotated_Nop; AnnotatedRef ref; float right_edge = 0.0; if (th_ix + rd_ix < wr_ix) { uint rd_el_ix = (rd_ix + th_ix) % N_RINGBUF; uint element_ix = sh_elements[rd_el_ix]; right_edge = sh_right_edge[rd_el_ix]; ref = AnnotatedRef(element_ix * Annotated_size); tag = Annotated_tag(ref); } // Setup for coverage algorithm. float a, b, c; // Bounding box of element in pixel coordinates. float xmin, xmax, ymin, ymax; uint my_slice = th_ix / 32; uint my_mask = 1 << (th_ix & 31); switch (tag) { case Annotated_FillLine: case Annotated_StrokeLine: AnnoStrokeLineSeg line = Annotated_StrokeLine_read(ref); xmin = min(line.p0.x, line.p1.x) - line.stroke.x; xmax = max(line.p0.x, line.p1.x) + line.stroke.x; ymin = min(line.p0.y, line.p1.y) - line.stroke.y; ymax = max(line.p0.y, line.p1.y) + line.stroke.y; float dx = line.p1.x - line.p0.x; float dy = line.p1.y - line.p0.y; if (tag == Annotated_FillLine) { // Set bit for backdrop sign calculation, 1 is +1, 0 is -1. if (dy < 0) { atomicOr(sh_bd_sign[my_slice], my_mask); } else { atomicAnd(sh_bd_sign[my_slice], ~my_mask); } } atomicOr(sh_is_segment[my_slice], my_mask); // Set up for per-scanline coverage formula, below. float invslope = abs(dy) < 1e-9 ? 1e9 : dx / dy; c = (line.stroke.x + abs(invslope) * (0.5 * float(TILE_HEIGHT_PX) + line.stroke.y)) * SX; b = invslope; // Note: assumes square tiles, otherwise scale. a = (line.p0.x - xy0.x - (line.p0.y - 0.5 * float(TILE_HEIGHT_PX) - xy0.y) * b) * SX; break; case Annotated_Fill: case Annotated_Stroke: // Note: we take advantage of the fact that fills and strokes // have compatible layout. AnnoFill fill = Annotated_Fill_read(ref); xmin = fill.bbox.x; xmax = fill.bbox.z; ymin = fill.bbox.y; ymax = fill.bbox.w; // Just let the clamping to xmin and xmax determine the bounds. a = 0.0; b = 0.0; c = 1e9; break; default: ymin = 0; ymax = 0; break; } // Draw the coverage area into the bitmasks. This uses an algorithm // that computes the coverage of a span for given scanline. // Compute bounding box in tiles and clip to this bin. int x0 = int(floor((xmin - xy0.x) * SX)); int x1 = int(ceil((xmax - xy0.x) * SX)); int xr = int(ceil((right_edge - xy0.x) * SX)); int y0 = int(floor((ymin - xy0.y) * SY)); int y1 = int(ceil((ymax - xy0.y) * SY)); x0 = clamp(x0, 0, N_TILE_X); x1 = clamp(x1, x0, N_TILE_X); xr = clamp(xr, 0, N_TILE_X); y0 = clamp(y0, 0, N_TILE_Y); y1 = clamp(y1, y0, N_TILE_Y); float t = a + b * float(y0); for (uint y = y0; y < y1; y++) { uint xx0 = clamp(int(floor(t - c)), x0, x1); uint xx1 = clamp(int(ceil(t + c)), x0, x1); for (uint x = xx0; x < xx1; x++) { atomicOr(sh_bitmaps[my_slice][y * N_TILE_X + x], my_mask); } if (tag == Annotated_FillLine && ymin <= xy0.y + float(y * TILE_HEIGHT_PX)) { // Assign backdrop to all tiles to the right of the ray crossing the // top edge of this tile, up to the right edge of the fill bbox. float xray = t - 0.5 * b; xx0 = max(int(ceil(xray)), 0); for (uint x = xx0; x < xr; x++) { atomicOr(sh_backdrop[my_slice][y * N_TILE_X + x], my_mask); } } t += b; } barrier(); // We've computed coverage and other info for each element in the input, now for // the output stage. We'll do segments first using a more parallel algorithm. uint seg_count = 0; for (uint i = 0; i < N_SLICE; i++) { seg_count += bitCount(sh_bitmaps[i][th_ix] & sh_is_segment[i]); } sh_seg_count[th_ix] = seg_count; sh_orig_seg_count[th_ix] = seg_count; // Prefix sum of sh_seg_count for (uint i = 0; i < LG_N_TILE; i++) { barrier(); if (th_ix >= (1 << i)) { seg_count += sh_seg_count[th_ix - (1 << i)]; } barrier(); sh_seg_count[th_ix] = seg_count; } if (th_ix == N_TILE - 1) { sh_seg_alloc = atomicAdd(alloc, seg_count * Segment_size); } barrier(); uint total_seg_count = sh_seg_count[N_TILE - 1]; uint seg_alloc = sh_seg_alloc; // Output buffer is allocated as segments for each tile laid end-to-end. for (uint ix = th_ix; ix < total_seg_count; ix += N_TILE) { // Find the work item; this thread is now not bound to an element or tile. // First find the tile (by binary search) uint tile_ix = 0; for (uint i = 0; i < LG_N_TILE; i++) { uint probe = tile_ix + ((N_TILE / 2) >> i); if (ix >= sh_seg_count[probe - 1]) { tile_ix = probe; } } // Now, sh_seg_count[tile_ix - 1] <= ix < sh_seg_count[tile_ix]. // (considering sh_seg_count[-1] == 0) // Index of segment within tile's segments uint seq_ix = ix; // Maybe consider a sentinel value to avoid the conditional? if (tile_ix > 0) { seq_ix -= sh_seg_count[tile_ix - 1]; } // Find the segment. This is done by linear scan through the bitmaps of the // tile, accelerated by bit counting. Binary search might help, maybe not. uint slice_ix = 0; uint seq_bits; while (true) { seq_bits = sh_bitmaps[slice_ix][tile_ix] & sh_is_segment[slice_ix]; uint this_count = bitCount(seq_bits); if (this_count > seq_ix) { break; } seq_ix -= this_count; slice_ix++; } // Now find position of nth bit set (n = seq_ix) in seq_bits; binary search uint bit_ix = 0; for (int i = 0; i < 5; i++) { uint probe = bit_ix + (16 >> i); if (seq_ix >= bitCount(seq_bits & ((1 << probe) - 1))) { bit_ix = probe; } } uint out_offset = seg_alloc + Segment_size * ix + SegChunk_size; uint rd_el_ix = (rd_ix + slice_ix * 32 + bit_ix) % N_RINGBUF; uint element_ix = sh_elements[rd_el_ix]; ref = AnnotatedRef(element_ix * Annotated_size); AnnoStrokeLineSeg line = Annotated_StrokeLine_read(ref); Segment seg = Segment(line.p0, line.p1); Segment_write(SegmentRef(seg_alloc + Segment_size * ix), seg); } // Output non-segment elements for this tile. The thread does a sequential walk // through the non-segment elements, and for segments, count and backdrop are // aggregated using bit counting. uint slice_ix = 0; uint bitmap = sh_bitmaps[0][th_ix]; uint bd_bitmap = sh_backdrop[0][th_ix]; uint bd_sign = sh_bd_sign[0]; uint is_segment = sh_is_segment[0]; uint seg_start = th_ix == 0 ? 0 : sh_seg_count[th_ix - 1]; seg_count = 0; while (true) { uint nonseg_bitmap = bitmap & ~is_segment; if (nonseg_bitmap == 0) { backdrop += count_backdrop(bd_bitmap, bd_sign); seg_count += bitCount(bitmap & is_segment); slice_ix++; if (slice_ix == N_SLICE) { break; } bitmap = sh_bitmaps[slice_ix][th_ix]; bd_bitmap = sh_backdrop[slice_ix][th_ix]; bd_sign = sh_bd_sign[slice_ix]; is_segment = sh_is_segment[slice_ix]; nonseg_bitmap = bitmap & ~is_segment; if (nonseg_bitmap == 0) { continue; } } uint element_ref_ix = slice_ix * 32 + findLSB(nonseg_bitmap); uint element_ix = sh_elements[(rd_ix + element_ref_ix) % N_RINGBUF]; // Bits up to and including the lsb uint bd_mask = (nonseg_bitmap - 1) ^ nonseg_bitmap; backdrop += count_backdrop(bd_bitmap & bd_mask, bd_sign); seg_count += bitCount(bitmap & bd_mask & is_segment); // Clear bits that have been consumed. bd_bitmap &= ~bd_mask; bitmap &= ~bd_mask; // At this point, we read the element again from global memory. // If that turns out to be expensive, maybe we can pack it into // shared memory (or perhaps just the tag). ref = AnnotatedRef(element_ix * Annotated_size); tag = Annotated_tag(ref); switch (tag) { case Annotated_Fill: /* if (seg_count > 0) { AnnoFill fill = Annotated_Fill_read(ref); SegChunk_write(seg_chunk_ref, SegChunk(chunk_n_segs, SegChunkRef(0))); seg_chunk_ref.offset += SegChunk_size + Segment_size * chunk_n_segs; CmdFill cmd_fill; cmd_fill.seg_ref = first_seg_chunk.offset; cmd_fill.backdrop = backdrop; cmd_fill.rgba_color = fill.rgba_color; alloc_cmd(cmd_ref, cmd_limit); Cmd_Fill_write(cmd_ref, cmd_fill); cmd_ref.offset += Cmd_size; chunk_n_segs = 0; } else if (backdrop != 0) { AnnoFill fill = Annotated_Fill_read(ref); alloc_cmd(cmd_ref, cmd_limit); Cmd_Solid_write(cmd_ref, CmdSolid(fill.rgba_color)); cmd_ref.offset += Cmd_size; } */ backdrop = 0; seg_count = 0; break; case Annotated_Stroke: if (last_chunk_n > 0 || seg_count > 0) { // TODO: noncontiguous case SegChunkRef chunk_ref = SegChunkRef(0); if (seg_count > 0) { chunk_ref = alloc_seg_chunk(); SegChunk chunk; chunk.n = seg_count; chunk.next = SegChunkRef(0); uint seg_offset = seg_alloc + seg_start * Segment_size; chunk.segs = SegmentRef(seg_offset); SegChunk_write(chunk_ref, chunk); } if (last_chunk_n > 0) { SegChunk chunk; chunk.n = last_chunk_n; chunk.next = chunk_ref; chunk.segs = last_chunk_segs; SegChunk_write(last_chunk_ref, chunk); } else { first_seg_chunk = chunk_ref; } AnnoStroke stroke = Annotated_Stroke_read(ref); CmdStroke cmd_stroke; cmd_stroke.seg_ref = first_seg_chunk; cmd_stroke.half_width = 0.5 * stroke.linewidth; cmd_stroke.rgba_color = stroke.rgba_color; alloc_cmd(cmd_ref, cmd_limit); Cmd_Stroke_write(cmd_ref, cmd_stroke); cmd_ref.offset += Cmd_size; last_chunk_n = 0; } seg_start += seg_count; seg_count = 0; break; default: // This shouldn't happen, but just in case. seg_start++; break; } } if (seg_count > 0) { SegChunkRef chunk_ref = alloc_seg_chunk(); if (last_chunk_n > 0) { SegChunk_write(last_chunk_ref, SegChunk(last_chunk_n, chunk_ref, last_chunk_segs)); } else { first_seg_chunk = chunk_ref; } // TODO: free two registers by writing count and segments ref now, // as opposed to deferring SegChunk write until all fields are known. last_chunk_ref = chunk_ref; last_chunk_n = seg_count; uint seg_offset = seg_alloc + seg_start * Segment_size; last_chunk_segs = SegmentRef(seg_offset); } barrier(); rd_ix += N_TILE; // The second disjunct is there as a strange workaround on Nvidia. If it is // removed, then the kernel fails with ERROR_DEVICE_LOST. if (rd_ix >= wr_ix || bin_ix == ~0) break; } Cmd_End_write(cmd_ref); }