#pragma clang diagnostic ignored "-Wmissing-prototypes" #pragma clang diagnostic ignored "-Wmissing-braces" #pragma clang diagnostic ignored "-Wunused-variable" #include #include #include using namespace metal; template struct spvUnsafeArray { T elements[Num ? Num : 1]; thread T& operator [] (size_t pos) thread { return elements[pos]; } constexpr const thread T& operator [] (size_t pos) const thread { return elements[pos]; } device T& operator [] (size_t pos) device { return elements[pos]; } constexpr const device T& operator [] (size_t pos) const device { return elements[pos]; } constexpr const constant T& operator [] (size_t pos) const constant { return elements[pos]; } threadgroup T& operator [] (size_t pos) threadgroup { return elements[pos]; } constexpr const threadgroup T& operator [] (size_t pos) const threadgroup { return elements[pos]; } }; struct Alloc { uint offset; }; struct MallocResult { Alloc alloc; bool failed; }; struct PathCubicRef { uint offset; }; struct PathCubic { float2 p0; float2 p1; float2 p2; float2 p3; uint path_ix; uint trans_ix; float2 stroke; }; struct PathSegRef { uint offset; }; struct PathSegTag { uint tag; uint flags; }; struct TileRef { uint offset; }; struct PathRef { uint offset; }; struct Path { uint4 bbox; TileRef tiles; }; struct TileSegRef { uint offset; }; struct TileSeg { float2 origin; float2 vector; float y_edge; TileSegRef next; }; struct SubdivResult { float val; float a0; float a2; }; struct Memory { uint mem_offset; uint mem_error; uint memory[1]; }; struct Alloc_1 { uint offset; }; struct Config { uint n_elements; uint n_pathseg; uint width_in_tiles; uint height_in_tiles; Alloc_1 tile_alloc; Alloc_1 bin_alloc; Alloc_1 ptcl_alloc; Alloc_1 pathseg_alloc; Alloc_1 anno_alloc; Alloc_1 trans_alloc; Alloc_1 bbox_alloc; Alloc_1 drawmonoid_alloc; uint n_trans; uint n_path; uint trans_offset; uint linewidth_offset; uint pathtag_offset; uint pathseg_offset; }; struct ConfigBuf { Config conf; }; constant uint3 gl_WorkGroupSize [[maybe_unused]] = uint3(32u, 1u, 1u); static inline __attribute__((always_inline)) bool touch_mem(thread const Alloc& alloc, thread const uint& offset) { return true; } static inline __attribute__((always_inline)) uint read_mem(thread const Alloc& alloc, thread const uint& offset, device Memory& v_136, constant uint& v_136BufferSize) { Alloc param = alloc; uint param_1 = offset; if (!touch_mem(param, param_1)) { return 0u; } uint v = v_136.memory[offset]; return v; } static inline __attribute__((always_inline)) PathSegTag PathSeg_tag(thread const Alloc& a, thread const PathSegRef& ref, device Memory& v_136, constant uint& v_136BufferSize) { Alloc param = a; uint param_1 = ref.offset >> uint(2); uint tag_and_flags = read_mem(param, param_1, v_136, v_136BufferSize); return PathSegTag{ tag_and_flags & 65535u, tag_and_flags >> uint(16) }; } static inline __attribute__((always_inline)) PathCubic PathCubic_read(thread const Alloc& a, thread const PathCubicRef& ref, device Memory& v_136, constant uint& v_136BufferSize) { uint ix = ref.offset >> uint(2); Alloc param = a; uint param_1 = ix + 0u; uint raw0 = read_mem(param, param_1, v_136, v_136BufferSize); Alloc param_2 = a; uint param_3 = ix + 1u; uint raw1 = read_mem(param_2, param_3, v_136, v_136BufferSize); Alloc param_4 = a; uint param_5 = ix + 2u; uint raw2 = read_mem(param_4, param_5, v_136, v_136BufferSize); Alloc param_6 = a; uint param_7 = ix + 3u; uint raw3 = read_mem(param_6, param_7, v_136, v_136BufferSize); Alloc param_8 = a; uint param_9 = ix + 4u; uint raw4 = read_mem(param_8, param_9, v_136, v_136BufferSize); Alloc param_10 = a; uint param_11 = ix + 5u; uint raw5 = read_mem(param_10, param_11, v_136, v_136BufferSize); Alloc param_12 = a; uint param_13 = ix + 6u; uint raw6 = read_mem(param_12, param_13, v_136, v_136BufferSize); Alloc param_14 = a; uint param_15 = ix + 7u; uint raw7 = read_mem(param_14, param_15, v_136, v_136BufferSize); Alloc param_16 = a; uint param_17 = ix + 8u; uint raw8 = read_mem(param_16, param_17, v_136, v_136BufferSize); Alloc param_18 = a; uint param_19 = ix + 9u; uint raw9 = read_mem(param_18, param_19, v_136, v_136BufferSize); Alloc param_20 = a; uint param_21 = ix + 10u; uint raw10 = read_mem(param_20, param_21, v_136, v_136BufferSize); Alloc param_22 = a; uint param_23 = ix + 11u; uint raw11 = read_mem(param_22, param_23, v_136, v_136BufferSize); PathCubic s; s.p0 = float2(as_type(raw0), as_type(raw1)); s.p1 = float2(as_type(raw2), as_type(raw3)); s.p2 = float2(as_type(raw4), as_type(raw5)); s.p3 = float2(as_type(raw6), as_type(raw7)); s.path_ix = raw8; s.trans_ix = raw9; s.stroke = float2(as_type(raw10), as_type(raw11)); return s; } static inline __attribute__((always_inline)) PathCubic PathSeg_Cubic_read(thread const Alloc& a, thread const PathSegRef& ref, device Memory& v_136, constant uint& v_136BufferSize) { Alloc param = a; PathCubicRef param_1 = PathCubicRef{ ref.offset + 4u }; return PathCubic_read(param, param_1, v_136, v_136BufferSize); } static inline __attribute__((always_inline)) float2 eval_cubic(thread const float2& p0, thread const float2& p1, thread const float2& p2, thread const float2& p3, thread const float& t) { float mt = 1.0 - t; return (p0 * ((mt * mt) * mt)) + (((p1 * ((mt * mt) * 3.0)) + (((p2 * (mt * 3.0)) + (p3 * t)) * t)) * t); } static inline __attribute__((always_inline)) float approx_parabola_integral(thread const float& x) { return x * rsqrt(sqrt(0.3300000131130218505859375 + (0.201511204242706298828125 + ((0.25 * x) * x)))); } static inline __attribute__((always_inline)) SubdivResult estimate_subdiv(thread const float2& p0, thread const float2& p1, thread const float2& p2, thread const float& sqrt_tol) { float2 d01 = p1 - p0; float2 d12 = p2 - p1; float2 dd = d01 - d12; float _cross = ((p2.x - p0.x) * dd.y) - ((p2.y - p0.y) * dd.x); float x0 = ((d01.x * dd.x) + (d01.y * dd.y)) / _cross; float x2 = ((d12.x * dd.x) + (d12.y * dd.y)) / _cross; float scale = abs(_cross / (length(dd) * (x2 - x0))); float param = x0; float a0 = approx_parabola_integral(param); float param_1 = x2; float a2 = approx_parabola_integral(param_1); float val = 0.0; if (scale < 1000000000.0) { float da = abs(a2 - a0); float sqrt_scale = sqrt(scale); if (sign(x0) == sign(x2)) { val = da * sqrt_scale; } else { float xmin = sqrt_tol / sqrt_scale; float param_2 = xmin; val = (sqrt_tol * da) / approx_parabola_integral(param_2); } } return SubdivResult{ val, a0, a2 }; } static inline __attribute__((always_inline)) uint fill_mode_from_flags(thread const uint& flags) { return flags & 1u; } static inline __attribute__((always_inline)) Path Path_read(thread const Alloc& a, thread const PathRef& ref, device Memory& v_136, constant uint& v_136BufferSize) { uint ix = ref.offset >> uint(2); Alloc param = a; uint param_1 = ix + 0u; uint raw0 = read_mem(param, param_1, v_136, v_136BufferSize); Alloc param_2 = a; uint param_3 = ix + 1u; uint raw1 = read_mem(param_2, param_3, v_136, v_136BufferSize); Alloc param_4 = a; uint param_5 = ix + 2u; uint raw2 = read_mem(param_4, param_5, v_136, v_136BufferSize); Path s; s.bbox = uint4(raw0 & 65535u, raw0 >> uint(16), raw1 & 65535u, raw1 >> uint(16)); s.tiles = TileRef{ raw2 }; return s; } static inline __attribute__((always_inline)) Alloc new_alloc(thread const uint& offset, thread const uint& size, thread const bool& mem_ok) { Alloc a; a.offset = offset; return a; } static inline __attribute__((always_inline)) float approx_parabola_inv_integral(thread const float& x) { return x * sqrt(0.61000001430511474609375 + (0.1520999968051910400390625 + ((0.25 * x) * x))); } static inline __attribute__((always_inline)) float2 eval_quad(thread const float2& p0, thread const float2& p1, thread const float2& p2, thread const float& t) { float mt = 1.0 - t; return (p0 * (mt * mt)) + (((p1 * (mt * 2.0)) + (p2 * t)) * t); } static inline __attribute__((always_inline)) MallocResult malloc(thread const uint& size, device Memory& v_136, constant uint& v_136BufferSize) { uint _142 = atomic_fetch_add_explicit((device atomic_uint*)&v_136.mem_offset, size, memory_order_relaxed); uint offset = _142; MallocResult r; r.failed = (offset + size) > uint(int((v_136BufferSize - 8) / 4) * 4); uint param = offset; uint param_1 = size; bool param_2 = !r.failed; r.alloc = new_alloc(param, param_1, param_2); if (r.failed) { uint _171 = atomic_fetch_max_explicit((device atomic_uint*)&v_136.mem_error, 1u, memory_order_relaxed); return r; } return r; } static inline __attribute__((always_inline)) TileRef Tile_index(thread const TileRef& ref, thread const uint& index) { return TileRef{ ref.offset + (index * 8u) }; } static inline __attribute__((always_inline)) void write_mem(thread const Alloc& alloc, thread const uint& offset, thread const uint& val, device Memory& v_136, constant uint& v_136BufferSize) { Alloc param = alloc; uint param_1 = offset; if (!touch_mem(param, param_1)) { return; } v_136.memory[offset] = val; } static inline __attribute__((always_inline)) void TileSeg_write(thread const Alloc& a, thread const TileSegRef& ref, thread const TileSeg& s, device Memory& v_136, constant uint& v_136BufferSize) { uint ix = ref.offset >> uint(2); Alloc param = a; uint param_1 = ix + 0u; uint param_2 = as_type(s.origin.x); write_mem(param, param_1, param_2, v_136, v_136BufferSize); Alloc param_3 = a; uint param_4 = ix + 1u; uint param_5 = as_type(s.origin.y); write_mem(param_3, param_4, param_5, v_136, v_136BufferSize); Alloc param_6 = a; uint param_7 = ix + 2u; uint param_8 = as_type(s.vector.x); write_mem(param_6, param_7, param_8, v_136, v_136BufferSize); Alloc param_9 = a; uint param_10 = ix + 3u; uint param_11 = as_type(s.vector.y); write_mem(param_9, param_10, param_11, v_136, v_136BufferSize); Alloc param_12 = a; uint param_13 = ix + 4u; uint param_14 = as_type(s.y_edge); write_mem(param_12, param_13, param_14, v_136, v_136BufferSize); Alloc param_15 = a; uint param_16 = ix + 5u; uint param_17 = s.next.offset; write_mem(param_15, param_16, param_17, v_136, v_136BufferSize); } kernel void main0(constant uint* spvBufferSizeConstants [[buffer(25)]], device Memory& v_136 [[buffer(0)]], const device ConfigBuf& _710 [[buffer(1)]], uint3 gl_GlobalInvocationID [[thread_position_in_grid]]) { constant uint& v_136BufferSize = spvBufferSizeConstants[0]; uint element_ix = gl_GlobalInvocationID.x; PathSegRef ref = PathSegRef{ _710.conf.pathseg_alloc.offset + (element_ix * 52u) }; PathSegTag tag = PathSegTag{ 0u, 0u }; if (element_ix < _710.conf.n_pathseg) { Alloc param; param.offset = _710.conf.pathseg_alloc.offset; PathSegRef param_1 = ref; tag = PathSeg_tag(param, param_1, v_136, v_136BufferSize); } bool mem_ok = v_136.mem_error == 0u; switch (tag.tag) { case 1u: { Alloc param_2; param_2.offset = _710.conf.pathseg_alloc.offset; PathSegRef param_3 = ref; PathCubic cubic = PathSeg_Cubic_read(param_2, param_3, v_136, v_136BufferSize); float2 err_v = (((cubic.p2 - cubic.p1) * 3.0) + cubic.p0) - cubic.p3; float err = (err_v.x * err_v.x) + (err_v.y * err_v.y); uint n_quads = max(uint(ceil(pow(err * 3.7037036418914794921875, 0.16666667163372039794921875))), 1u); n_quads = min(n_quads, 16u); float val = 0.0; float2 qp0 = cubic.p0; float _step = 1.0 / float(n_quads); spvUnsafeArray keep_params; for (uint i = 0u; i < n_quads; i++) { float t = float(i + 1u) * _step; float2 param_4 = cubic.p0; float2 param_5 = cubic.p1; float2 param_6 = cubic.p2; float2 param_7 = cubic.p3; float param_8 = t; float2 qp2 = eval_cubic(param_4, param_5, param_6, param_7, param_8); float2 param_9 = cubic.p0; float2 param_10 = cubic.p1; float2 param_11 = cubic.p2; float2 param_12 = cubic.p3; float param_13 = t - (0.5 * _step); float2 qp1 = eval_cubic(param_9, param_10, param_11, param_12, param_13); qp1 = (qp1 * 2.0) - ((qp0 + qp2) * 0.5); float2 param_14 = qp0; float2 param_15 = qp1; float2 param_16 = qp2; float param_17 = 0.4743416607379913330078125; SubdivResult params = estimate_subdiv(param_14, param_15, param_16, param_17); keep_params[i] = params; val += params.val; qp0 = qp2; } uint n = max(uint(ceil((val * 0.5) / 0.4743416607379913330078125)), 1u); uint param_18 = tag.flags; bool is_stroke = fill_mode_from_flags(param_18) == 1u; uint path_ix = cubic.path_ix; Alloc param_19; param_19.offset = _710.conf.tile_alloc.offset; PathRef param_20 = PathRef{ _710.conf.tile_alloc.offset + (path_ix * 12u) }; Path path = Path_read(param_19, param_20, v_136, v_136BufferSize); uint param_21 = path.tiles.offset; uint param_22 = ((path.bbox.z - path.bbox.x) * (path.bbox.w - path.bbox.y)) * 8u; bool param_23 = mem_ok; Alloc path_alloc = new_alloc(param_21, param_22, param_23); int4 bbox = int4(path.bbox); float2 p0 = cubic.p0; qp0 = cubic.p0; float v_step = val / float(n); int n_out = 1; float val_sum = 0.0; float2 p1; float _1147; TileSeg tile_seg; for (uint i_1 = 0u; i_1 < n_quads; i_1++) { float t_1 = float(i_1 + 1u) * _step; float2 param_24 = cubic.p0; float2 param_25 = cubic.p1; float2 param_26 = cubic.p2; float2 param_27 = cubic.p3; float param_28 = t_1; float2 qp2_1 = eval_cubic(param_24, param_25, param_26, param_27, param_28); float2 param_29 = cubic.p0; float2 param_30 = cubic.p1; float2 param_31 = cubic.p2; float2 param_32 = cubic.p3; float param_33 = t_1 - (0.5 * _step); float2 qp1_1 = eval_cubic(param_29, param_30, param_31, param_32, param_33); qp1_1 = (qp1_1 * 2.0) - ((qp0 + qp2_1) * 0.5); SubdivResult params_1 = keep_params[i_1]; float param_34 = params_1.a0; float u0 = approx_parabola_inv_integral(param_34); float param_35 = params_1.a2; float u2 = approx_parabola_inv_integral(param_35); float uscale = 1.0 / (u2 - u0); float target = float(n_out) * v_step; for (;;) { bool _1040 = uint(n_out) == n; bool _1050; if (!_1040) { _1050 = target < (val_sum + params_1.val); } else { _1050 = _1040; } if (_1050) { if (uint(n_out) == n) { p1 = cubic.p3; } else { float u = (target - val_sum) / params_1.val; float a = mix(params_1.a0, params_1.a2, u); float param_36 = a; float au = approx_parabola_inv_integral(param_36); float t_2 = (au - u0) * uscale; float2 param_37 = qp0; float2 param_38 = qp1_1; float2 param_39 = qp2_1; float param_40 = t_2; p1 = eval_quad(param_37, param_38, param_39, param_40); } float xmin = fast::min(p0.x, p1.x) - cubic.stroke.x; float xmax = fast::max(p0.x, p1.x) + cubic.stroke.x; float ymin = fast::min(p0.y, p1.y) - cubic.stroke.y; float ymax = fast::max(p0.y, p1.y) + cubic.stroke.y; float dx = p1.x - p0.x; float dy = p1.y - p0.y; if (abs(dy) < 9.999999717180685365747194737196e-10) { _1147 = 1000000000.0; } else { _1147 = dx / dy; } float invslope = _1147; float c = (cubic.stroke.x + (abs(invslope) * (8.0 + cubic.stroke.y))) * 0.0625; float b = invslope; float a_1 = (p0.x - ((p0.y - 8.0) * b)) * 0.0625; int x0 = int(floor(xmin * 0.0625)); int x1 = int(floor(xmax * 0.0625) + 1.0); int y0 = int(floor(ymin * 0.0625)); int y1 = int(floor(ymax * 0.0625) + 1.0); x0 = clamp(x0, bbox.x, bbox.z); y0 = clamp(y0, bbox.y, bbox.w); x1 = clamp(x1, bbox.x, bbox.z); y1 = clamp(y1, bbox.y, bbox.w); float xc = a_1 + (b * float(y0)); int stride = bbox.z - bbox.x; int base = ((y0 - bbox.y) * stride) - bbox.x; uint n_tile_alloc = uint((x1 - x0) * (y1 - y0)); uint param_41 = n_tile_alloc * 24u; MallocResult _1263 = malloc(param_41, v_136, v_136BufferSize); MallocResult tile_alloc = _1263; if (tile_alloc.failed || (!mem_ok)) { return; } uint tile_offset = tile_alloc.alloc.offset; int xray = int(floor(p0.x * 0.0625)); int last_xray = int(floor(p1.x * 0.0625)); if (p0.y > p1.y) { int tmp = xray; xray = last_xray; last_xray = tmp; } for (int y = y0; y < y1; y++) { float tile_y0 = float(y * 16); int xbackdrop = max((xray + 1), bbox.x); bool _1319 = !is_stroke; bool _1329; if (_1319) { _1329 = fast::min(p0.y, p1.y) < tile_y0; } else { _1329 = _1319; } bool _1336; if (_1329) { _1336 = xbackdrop < bbox.z; } else { _1336 = _1329; } if (_1336) { int backdrop = (p1.y < p0.y) ? 1 : (-1); TileRef param_42 = path.tiles; uint param_43 = uint(base + xbackdrop); TileRef tile_ref = Tile_index(param_42, param_43); uint tile_el = tile_ref.offset >> uint(2); Alloc param_44 = path_alloc; uint param_45 = tile_el + 1u; if (touch_mem(param_44, param_45)) { uint _1374 = atomic_fetch_add_explicit((device atomic_uint*)&v_136.memory[tile_el + 1u], uint(backdrop), memory_order_relaxed); } } int next_xray = last_xray; if (y < (y1 - 1)) { float tile_y1 = float((y + 1) * 16); float x_edge = mix(p0.x, p1.x, (tile_y1 - p0.y) / dy); next_xray = int(floor(x_edge * 0.0625)); } int min_xray = min(xray, next_xray); int max_xray = max(xray, next_xray); int xx0 = min(int(floor(xc - c)), min_xray); int xx1 = max(int(ceil(xc + c)), (max_xray + 1)); xx0 = clamp(xx0, x0, x1); xx1 = clamp(xx1, x0, x1); for (int x = xx0; x < xx1; x++) { float tile_x0 = float(x * 16); TileRef param_46 = TileRef{ path.tiles.offset }; uint param_47 = uint(base + x); TileRef tile_ref_1 = Tile_index(param_46, param_47); uint tile_el_1 = tile_ref_1.offset >> uint(2); uint old = 0u; Alloc param_48 = path_alloc; uint param_49 = tile_el_1; if (touch_mem(param_48, param_49)) { uint _1477 = atomic_exchange_explicit((device atomic_uint*)&v_136.memory[tile_el_1], tile_offset, memory_order_relaxed); old = _1477; } tile_seg.origin = p0; tile_seg.vector = p1 - p0; float y_edge = 0.0; if (!is_stroke) { y_edge = mix(p0.y, p1.y, (tile_x0 - p0.x) / dx); if (fast::min(p0.x, p1.x) < tile_x0) { float2 p = float2(tile_x0, y_edge); if (p0.x > p1.x) { tile_seg.vector = p - p0; } else { tile_seg.origin = p; tile_seg.vector = p1 - p; } if (tile_seg.vector.x == 0.0) { tile_seg.vector.x = sign(p1.x - p0.x) * 9.999999717180685365747194737196e-10; } } if ((x <= min_xray) || (max_xray < x)) { y_edge = 1000000000.0; } } tile_seg.y_edge = y_edge; tile_seg.next.offset = old; Alloc param_50 = tile_alloc.alloc; TileSegRef param_51 = TileSegRef{ tile_offset }; TileSeg param_52 = tile_seg; TileSeg_write(param_50, param_51, param_52, v_136, v_136BufferSize); tile_offset += 24u; } xc += b; base += stride; xray = next_xray; } n_out++; target += v_step; p0 = p1; continue; } else { break; } } val_sum += params_1.val; qp0 = qp2_1; } break; } } }