// Coarse rasterization of path segments. // Allocation and initialization of tiles for paths. #version 450 #extension GL_GOOGLE_include_directive : enable #include "setup.h" #define LG_COARSE_WG 5 #define COARSE_WG (1 << LG_COARSE_WG) layout(local_size_x = COARSE_WG, local_size_y = 1) in; layout(set = 0, binding = 0) buffer PathSegBuf { uint[] pathseg; }; layout(set = 0, binding = 1) buffer AllocBuf { uint n_paths; uint n_pathseg; uint alloc; }; layout(set = 0, binding = 2) buffer TileBuf { uint[] tile; }; #include "pathseg.h" #include "tile.h" // scale factors useful for converting coordinates to tiles #define SX (1.0 / float(TILE_WIDTH_PX)) #define SY (1.0 / float(TILE_HEIGHT_PX)) shared uint sh_tile_count[COARSE_WG]; shared uint sh_width[COARSE_WG]; shared uint sh_draw_width[COARSE_WG]; shared uint sh_tag[COARSE_WG]; shared vec2 sh_p0[COARSE_WG]; shared vec2 sh_p1[COARSE_WG]; shared int sh_x0[COARSE_WG]; shared int sh_bbox_x1[COARSE_WG]; shared int sh_y0[COARSE_WG]; shared float sh_a[COARSE_WG]; shared float sh_b[COARSE_WG]; shared float sh_c[COARSE_WG]; shared uint sh_base[COARSE_WG]; shared uint sh_stride[COARSE_WG]; shared uint sh_alloc_start; void main() { uint th_ix = gl_LocalInvocationID.x; uint element_ix = gl_GlobalInvocationID.x; PathSegRef ref = PathSegRef(element_ix * PathSeg_size); uint tag = PathSeg_Nop; if (element_ix < n_pathseg) { tag = PathSeg_tag(ref); } sh_tag[th_ix] = tag; // Setup for coverage algorithm. float a, b, c; // Bounding box of element in pixel coordinates. float xmin, xmax, ymin, ymax; PathStrokeLine line; switch (tag) { case PathSeg_FillLine: case PathSeg_StrokeLine: line = PathSeg_StrokeLine_read(ref); sh_p0[th_ix] = line.p0; sh_p1[th_ix] = line.p1; xmin = min(line.p0.x, line.p1.x) - line.stroke.x; xmax = max(line.p0.x, line.p1.x) + line.stroke.x; ymin = min(line.p0.y, line.p1.y) - line.stroke.y; ymax = max(line.p0.y, line.p1.y) + line.stroke.y; float dx = line.p1.x - line.p0.x; float dy = line.p1.y - line.p0.y; // Set up for per-scanline coverage formula, below. float invslope = abs(dy) < 1e-9 ? 1e9 : dx / dy; c = (line.stroke.x + abs(invslope) * (0.5 * float(TILE_HEIGHT_PX) + line.stroke.y)) * SX; b = invslope; // Note: assumes square tiles, otherwise scale. a = (line.p0.x - (line.p0.y - 0.5 * float(TILE_HEIGHT_PX)) * b) * SX; sh_a[th_ix] = a; sh_b[th_ix] = b; sh_c[th_ix] = c; break; } int x0 = int(floor((xmin) * SX)); int x1 = int(ceil((xmax) * SX)); int y0 = int(floor((ymin) * SY)); int y1 = int(ceil((ymax) * SY)); uint path_ix = line.path_ix; Path path = Path_read(PathRef(path_ix * Path_size)); ivec4 bbox = ivec4(path.bbox); x0 = clamp(x0, bbox.x, bbox.z); y0 = clamp(y0, bbox.y, bbox.w); x1 = clamp(x1, bbox.x, bbox.z); y1 = clamp(y1, bbox.y, bbox.w); sh_x0[th_ix] = x0; sh_bbox_x1[th_ix] = bbox.z; // TODO: can get rid of this (fold into base), with care (also need to update `a`) sh_y0[th_ix] = y0; int stride = bbox.z - bbox.x; sh_stride[th_ix] = stride; sh_base[th_ix] = path.tiles.offset - (bbox.y * stride + bbox.x) * Tile_size; uint width = uint(x1 - x0); sh_width[th_ix] = width; uint draw_width = min(width, uint(1.0 + ceil(2.0 * c))); sh_draw_width[th_ix] = draw_width; uint tile_count = draw_width * uint(y1 - y0); sh_tile_count[th_ix] = tile_count; for (uint i = 0; i < LG_COARSE_WG; i++) { barrier(); if (th_ix >= (1 << i)) { tile_count += sh_tile_count[th_ix - (1 << i)]; } barrier(); sh_tile_count[th_ix] = tile_count; } if (th_ix == COARSE_WG - 1) { sh_alloc_start = atomicAdd(alloc, tile_count * TileSeg_size); } barrier(); uint alloc_start = sh_alloc_start; uint total_tile_count = sh_tile_count[COARSE_WG - 1]; for (uint ix = th_ix; ix < total_tile_count; ix += COARSE_WG) { // Binary search to find element uint el_ix = 0; for (uint i = 0; i < LG_COARSE_WG; i++) { uint probe = el_ix + ((COARSE_WG / 2) >> i); if (ix >= sh_tile_count[probe - 1]) { el_ix = probe; } } uint seq_ix = ix - (el_ix > 0 ? sh_tile_count[el_ix - 1] : 0); uint draw_width = sh_draw_width[el_ix]; int x0 = sh_x0[el_ix]; int x1 = x0 + int(sh_width[el_ix]); int dx = int(seq_ix % draw_width); uint y = sh_y0[el_ix] + seq_ix / draw_width; float b = sh_b[el_ix]; float t = sh_a[el_ix] + b * float(y); float c = sh_c[el_ix]; int xx0 = clamp(int(floor(t - c)), x0, x1); int xx1 = clamp(int(ceil(t + c)), x0, x1); int x = xx0 + dx; if (x < xx1) { uint tile_offset = alloc_start + ix * TileSeg_size; uint tile_el = (sh_base[el_ix] + uint(y * sh_stride[el_ix] + x) * Tile_size) >> 2; uint old = atomicExchange(tile[tile_el], tile_offset); TileSeg tile_seg; vec2 p0 = sh_p0[el_ix]; vec2 p1 = sh_p1[el_ix]; float y_edge = 0.0; if (sh_tag[el_ix] == PathSeg_FillLine) { vec2 tile_xy = vec2(x * TILE_WIDTH_PX, y * TILE_HEIGHT_PX); if (dx == 0 && min(p0.y, p1.y) <= tile_xy.y) { // TODO: need a little more work to make sure this triggers even // when line is to the left of bbox. int xray = max(int(ceil(t - 0.5 * b)), x0); if (xray < sh_bbox_x1[el_ix]) { int backdrop = p1.y < p0.y ? 1 : -1; atomicAdd(tile[tile_el + 1 + 2 * (xray - x)], backdrop); } } y_edge = mix(p0.y, p1.y, (tile_xy.x - p0.x) / (p1.x - p0.x)); if (min(p0.x, p1.x) < tile_xy.x && y_edge >= tile_xy.y && y_edge < tile_xy.y + TILE_HEIGHT_PX) { if (p0.x > p1.x) { p1 = vec2(tile_xy.x, y_edge); } else { p0 = vec2(tile_xy.x, y_edge); } } else { y_edge = 1e9; } } tile_seg.start = p0; tile_seg.end = p1; tile_seg.y_edge = y_edge; tile_seg.next.offset = old; TileSeg_write(TileSegRef(tile_offset), tile_seg); } } }