// SPDX-License-Identifier: Apache-2.0 OR MIT OR Unlicense // The coarse rasterizer stage of the pipeline. // // As input we have the ordered partitions of paths from the binning phase and // the annotated tile list of segments and backdrop per path. // // Each workgroup operating on one bin by stream compacting // the elements corresponding to the bin. // // As output we have an ordered command stream per tile. Every tile from a path (backdrop + segment list) will be // encoded. #version 450 #extension GL_GOOGLE_include_directive : enable #include "mem.h" #include "setup.h" layout(local_size_x = N_TILE, local_size_y = 1) in; layout(set = 0, binding = 1) readonly buffer ConfigBuf { Config conf; }; #include "annotated.h" #include "bins.h" #include "tile.h" #include "ptcl.h" #define LG_N_PART_READ (7 + LG_WG_FACTOR) #define N_PART_READ (1 << LG_N_PART_READ) shared uint sh_elements[N_TILE]; // Number of elements in the partition; prefix sum. shared uint sh_part_count[N_PART_READ]; shared Alloc sh_part_elements[N_PART_READ]; shared uint sh_bitmaps[N_SLICE][N_TILE]; shared uint sh_tile_count[N_TILE]; // The width of the tile rect for the element, intersected with this bin shared uint sh_tile_width[N_TILE]; shared uint sh_tile_x0[N_TILE]; shared uint sh_tile_y0[N_TILE]; // These are set up so base + tile_y * stride + tile_x points to a Tile. shared uint sh_tile_base[N_TILE]; shared uint sh_tile_stride[N_TILE]; #ifdef MEM_DEBUG // Store allocs only when MEM_DEBUG to save shared memory traffic. shared Alloc sh_tile_alloc[N_TILE]; void write_tile_alloc(uint el_ix, Alloc a) { sh_tile_alloc[el_ix] = a; } Alloc read_tile_alloc(uint el_ix, bool mem_ok) { return sh_tile_alloc[el_ix]; } #else void write_tile_alloc(uint el_ix, Alloc a) { // No-op } Alloc read_tile_alloc(uint el_ix, bool mem_ok) { // All memory. return new_alloc(0, memory.length() * 4, mem_ok); } #endif // The maximum number of commands per annotated element. #define ANNO_COMMANDS 2 // Perhaps cmd_alloc should be a global? This is a style question. bool alloc_cmd(inout Alloc cmd_alloc, inout CmdRef cmd_ref, inout uint cmd_limit) { if (cmd_ref.offset < cmd_limit) { return true; } MallocResult new_cmd = malloc(PTCL_INITIAL_ALLOC); if (new_cmd.failed) { return false; } CmdJump jump = CmdJump(new_cmd.alloc.offset); Cmd_Jump_write(cmd_alloc, cmd_ref, jump); cmd_alloc = new_cmd.alloc; cmd_ref = CmdRef(cmd_alloc.offset); // Reserve space for the maximum number of commands and a potential jump. cmd_limit = cmd_alloc.offset + PTCL_INITIAL_ALLOC - (ANNO_COMMANDS + 1) * Cmd_size; return true; } void write_fill(Alloc alloc, inout CmdRef cmd_ref, uint flags, Tile tile, float linewidth) { if (fill_mode_from_flags(flags) == MODE_NONZERO) { if (tile.tile.offset != 0) { CmdFill cmd_fill = CmdFill(tile.tile.offset, tile.backdrop); Cmd_Fill_write(alloc, cmd_ref, cmd_fill); cmd_ref.offset += 4 + CmdFill_size; } else { Cmd_Solid_write(alloc, cmd_ref); cmd_ref.offset += 4; } } else { CmdStroke cmd_stroke = CmdStroke(tile.tile.offset, 0.5 * linewidth); Cmd_Stroke_write(alloc, cmd_ref, cmd_stroke); cmd_ref.offset += 4 + CmdStroke_size; } } void main() { // Could use either linear or 2d layouts for both dispatch and // invocations within the workgroup. We'll use variables to abstract. uint width_in_bins = (conf.width_in_tiles + N_TILE_X - 1) / N_TILE_X; uint bin_ix = width_in_bins * gl_WorkGroupID.y + gl_WorkGroupID.x; uint partition_ix = 0; uint n_partitions = (conf.n_elements + N_TILE - 1) / N_TILE; uint th_ix = gl_LocalInvocationID.x; // Coordinates of top left of bin, in tiles. uint bin_tile_x = N_TILE_X * gl_WorkGroupID.x; uint bin_tile_y = N_TILE_Y * gl_WorkGroupID.y; // Per-tile state uint tile_x = gl_LocalInvocationID.x % N_TILE_X; uint tile_y = gl_LocalInvocationID.x / N_TILE_X; uint this_tile_ix = (bin_tile_y + tile_y) * conf.width_in_tiles + bin_tile_x + tile_x; Alloc cmd_alloc = slice_mem(conf.ptcl_alloc, this_tile_ix * PTCL_INITIAL_ALLOC, PTCL_INITIAL_ALLOC); CmdRef cmd_ref = CmdRef(cmd_alloc.offset); // Reserve space for the maximum number of commands and a potential jump. uint cmd_limit = cmd_ref.offset + PTCL_INITIAL_ALLOC - (ANNO_COMMANDS + 1) * Cmd_size; // The nesting depth of the clip stack uint clip_depth = 0; // State for the "clip zero" optimization. If it's nonzero, then we are // currently in a clip for which the entire tile has an alpha of zero, and // the value is the depth after the "begin clip" of that element. uint clip_zero_depth = 0; // State for the "clip one" optimization. If bit `i` is set, then that means // that the clip pushed at depth `i` has an alpha of all one. uint clip_one_mask = 0; // I'm sure we can figure out how to do this with at least one fewer register... // Items up to rd_ix have been read from sh_elements uint rd_ix = 0; // Items up to wr_ix have been written into sh_elements uint wr_ix = 0; // Items between part_start_ix and ready_ix are ready to be transferred from sh_part_elements uint part_start_ix = 0; uint ready_ix = 0; bool mem_ok = mem_error == NO_ERROR; while (true) { for (uint i = 0; i < N_SLICE; i++) { sh_bitmaps[i][th_ix] = 0; } // parallel read of input partitions do { if (ready_ix == wr_ix && partition_ix < n_partitions) { part_start_ix = ready_ix; uint count = 0; if (th_ix < N_PART_READ && partition_ix + th_ix < n_partitions) { uint in_ix = (conf.bin_alloc.offset >> 2) + ((partition_ix + th_ix) * N_TILE + bin_ix) * 2; count = read_mem(conf.bin_alloc, in_ix); uint offset = read_mem(conf.bin_alloc, in_ix + 1); sh_part_elements[th_ix] = new_alloc(offset, count * BinInstance_size, mem_ok); } // prefix sum of counts for (uint i = 0; i < LG_N_PART_READ; i++) { if (th_ix < N_PART_READ) { sh_part_count[th_ix] = count; } barrier(); if (th_ix < N_PART_READ) { if (th_ix >= (1u << i)) { count += sh_part_count[th_ix - (1u << i)]; } } barrier(); } if (th_ix < N_PART_READ) { sh_part_count[th_ix] = part_start_ix + count; } barrier(); ready_ix = sh_part_count[N_PART_READ - 1]; partition_ix += N_PART_READ; } // use binary search to find element to read uint ix = rd_ix + th_ix; if (ix >= wr_ix && ix < ready_ix && mem_ok) { uint part_ix = 0; for (uint i = 0; i < LG_N_PART_READ; i++) { uint probe = part_ix + (uint(N_PART_READ / 2) >> i); if (ix >= sh_part_count[probe - 1]) { part_ix = probe; } } ix -= part_ix > 0 ? sh_part_count[part_ix - 1] : part_start_ix; Alloc bin_alloc = sh_part_elements[part_ix]; BinInstanceRef inst_ref = BinInstanceRef(bin_alloc.offset); BinInstance inst = BinInstance_read(bin_alloc, BinInstance_index(inst_ref, ix)); sh_elements[th_ix] = inst.element_ix; } barrier(); wr_ix = min(rd_ix + N_TILE, ready_ix); } while (wr_ix - rd_ix < N_TILE && (wr_ix < ready_ix || partition_ix < n_partitions)); // We've done the merge and filled the buffer. // Read one element, compute coverage. uint tag = Annotated_Nop; uint element_ix; AnnotatedRef ref; if (th_ix + rd_ix < wr_ix) { element_ix = sh_elements[th_ix]; ref = AnnotatedRef(conf.anno_alloc.offset + element_ix * Annotated_size); tag = Annotated_tag(conf.anno_alloc, ref).tag; } // Bounding box of element in pixel coordinates. uint tile_count; switch (tag) { case Annotated_Color: case Annotated_Image: case Annotated_LinGradient: case Annotated_BeginClip: case Annotated_EndClip: // We have one "path" for each element, even if the element isn't // actually a path (currently EndClip, but images etc in the future). uint path_ix = element_ix; Path path = Path_read(conf.tile_alloc, PathRef(conf.tile_alloc.offset + path_ix * Path_size)); uint stride = path.bbox.z - path.bbox.x; sh_tile_stride[th_ix] = stride; int dx = int(path.bbox.x) - int(bin_tile_x); int dy = int(path.bbox.y) - int(bin_tile_y); int x0 = clamp(dx, 0, N_TILE_X); int y0 = clamp(dy, 0, N_TILE_Y); int x1 = clamp(int(path.bbox.z) - int(bin_tile_x), 0, N_TILE_X); int y1 = clamp(int(path.bbox.w) - int(bin_tile_y), 0, N_TILE_Y); sh_tile_width[th_ix] = uint(x1 - x0); sh_tile_x0[th_ix] = x0; sh_tile_y0[th_ix] = y0; tile_count = uint(x1 - x0) * uint(y1 - y0); // base relative to bin uint base = path.tiles.offset - uint(dy * stride + dx) * Tile_size; sh_tile_base[th_ix] = base; Alloc path_alloc = new_alloc(path.tiles.offset, (path.bbox.z - path.bbox.x) * (path.bbox.w - path.bbox.y) * Tile_size, mem_ok); write_tile_alloc(th_ix, path_alloc); break; default: tile_count = 0; break; } // Prefix sum of sh_tile_count sh_tile_count[th_ix] = tile_count; for (uint i = 0; i < LG_N_TILE; i++) { barrier(); if (th_ix >= (1u << i)) { tile_count += sh_tile_count[th_ix - (1u << i)]; } barrier(); sh_tile_count[th_ix] = tile_count; } barrier(); uint total_tile_count = sh_tile_count[N_TILE - 1]; for (uint ix = th_ix; ix < total_tile_count; ix += N_TILE) { // Binary search to find element uint el_ix = 0; for (uint i = 0; i < LG_N_TILE; i++) { uint probe = el_ix + (uint(N_TILE / 2) >> i); if (ix >= sh_tile_count[probe - 1]) { el_ix = probe; } } AnnotatedRef ref = AnnotatedRef(conf.anno_alloc.offset + sh_elements[el_ix] * Annotated_size); uint tag = Annotated_tag(conf.anno_alloc, ref).tag; uint seq_ix = ix - (el_ix > 0 ? sh_tile_count[el_ix - 1] : 0); uint width = sh_tile_width[el_ix]; uint x = sh_tile_x0[el_ix] + seq_ix % width; uint y = sh_tile_y0[el_ix] + seq_ix / width; bool include_tile = false; if (tag == Annotated_BeginClip || tag == Annotated_EndClip) { include_tile = true; } else if (mem_ok) { Tile tile = Tile_read(read_tile_alloc(el_ix, mem_ok), TileRef(sh_tile_base[el_ix] + (sh_tile_stride[el_ix] * y + x) * Tile_size)); // Include the path in the tile if // - the tile contains at least a segment (tile offset non-zero) // - the tile is completely covered (backdrop non-zero) include_tile = tile.tile.offset != 0 || tile.backdrop != 0; } if (include_tile) { uint el_slice = el_ix / 32; uint el_mask = 1u << (el_ix & 31); atomicOr(sh_bitmaps[el_slice][y * N_TILE_X + x], el_mask); } } barrier(); // Output non-segment elements for this tile. The thread does a sequential walk // through the non-segment elements. uint slice_ix = 0; uint bitmap = sh_bitmaps[0][th_ix]; while (mem_ok) { if (bitmap == 0) { slice_ix++; if (slice_ix == N_SLICE) { break; } bitmap = sh_bitmaps[slice_ix][th_ix]; if (bitmap == 0) { continue; } } uint element_ref_ix = slice_ix * 32 + findLSB(bitmap); uint element_ix = sh_elements[element_ref_ix]; // Clear LSB bitmap &= bitmap - 1; // At this point, we read the element again from global memory. // If that turns out to be expensive, maybe we can pack it into // shared memory (or perhaps just the tag). ref = AnnotatedRef(conf.anno_alloc.offset + element_ix * Annotated_size); AnnotatedTag tag = Annotated_tag(conf.anno_alloc, ref); if (clip_zero_depth == 0) { switch (tag.tag) { case Annotated_Color: Tile tile = Tile_read(read_tile_alloc(element_ref_ix, mem_ok), TileRef(sh_tile_base[element_ref_ix] + (sh_tile_stride[element_ref_ix] * tile_y + tile_x) * Tile_size)); AnnoColor fill = Annotated_Color_read(conf.anno_alloc, ref); if (!alloc_cmd(cmd_alloc, cmd_ref, cmd_limit)) { break; } write_fill(cmd_alloc, cmd_ref, tag.flags, tile, fill.linewidth); Cmd_Color_write(cmd_alloc, cmd_ref, CmdColor(fill.rgba_color)); cmd_ref.offset += 4 + CmdColor_size; break; case Annotated_LinGradient: tile = Tile_read(read_tile_alloc(element_ref_ix, mem_ok), TileRef(sh_tile_base[element_ref_ix] + (sh_tile_stride[element_ref_ix] * tile_y + tile_x) * Tile_size)); AnnoLinGradient lin = Annotated_LinGradient_read(conf.anno_alloc, ref); if (!alloc_cmd(cmd_alloc, cmd_ref, cmd_limit)) { break; } write_fill(cmd_alloc, cmd_ref, tag.flags, tile, fill.linewidth); CmdLinGrad cmd_lin; cmd_lin.index = lin.index; cmd_lin.line_x = lin.line_x; cmd_lin.line_y = lin.line_y; cmd_lin.line_c = lin.line_c; Cmd_LinGrad_write(cmd_alloc, cmd_ref, cmd_lin); cmd_ref.offset += 4 + CmdLinGrad_size; break; case Annotated_Image: tile = Tile_read(read_tile_alloc(element_ref_ix, mem_ok), TileRef(sh_tile_base[element_ref_ix] + (sh_tile_stride[element_ref_ix] * tile_y + tile_x) * Tile_size)); AnnoImage fill_img = Annotated_Image_read(conf.anno_alloc, ref); if (!alloc_cmd(cmd_alloc, cmd_ref, cmd_limit)) { break; } write_fill(cmd_alloc, cmd_ref, tag.flags, tile, fill_img.linewidth); Cmd_Image_write(cmd_alloc, cmd_ref, CmdImage(fill_img.index, fill_img.offset)); cmd_ref.offset += 4 + CmdImage_size; break; case Annotated_BeginClip: tile = Tile_read(read_tile_alloc(element_ref_ix, mem_ok), TileRef(sh_tile_base[element_ref_ix] + (sh_tile_stride[element_ref_ix] * tile_y + tile_x) * Tile_size)); if (tile.tile.offset == 0 && tile.backdrop == 0) { clip_zero_depth = clip_depth + 1; } else if (tile.tile.offset == 0 && clip_depth < 32) { clip_one_mask |= (1u << clip_depth); } else { AnnoBeginClip begin_clip = Annotated_BeginClip_read(conf.anno_alloc, ref); if (!alloc_cmd(cmd_alloc, cmd_ref, cmd_limit)) { break; } write_fill(cmd_alloc, cmd_ref, tag.flags, tile, begin_clip.linewidth); Cmd_BeginClip_write(cmd_alloc, cmd_ref); cmd_ref.offset += 4; if (clip_depth < 32) { clip_one_mask &= ~(1u << clip_depth); } } clip_depth++; break; case Annotated_EndClip: clip_depth--; if (clip_depth >= 32 || (clip_one_mask & (1u << clip_depth)) == 0) { if (!alloc_cmd(cmd_alloc, cmd_ref, cmd_limit)) { break; } Cmd_Solid_write(cmd_alloc, cmd_ref); cmd_ref.offset += 4; Cmd_EndClip_write(cmd_alloc, cmd_ref); cmd_ref.offset += 4; } break; } } else { // In "clip zero" state, suppress all drawing switch (tag.tag) { case Annotated_BeginClip: clip_depth++; break; case Annotated_EndClip: if (clip_depth == clip_zero_depth) { clip_zero_depth = 0; } clip_depth--; break; } } } barrier(); rd_ix += N_TILE; if (rd_ix >= ready_ix && partition_ix >= n_partitions) break; } if (bin_tile_x + tile_x < conf.width_in_tiles && bin_tile_y + tile_y < conf.height_in_tiles) { Cmd_End_write(cmd_alloc, cmd_ref); } }