// SPDX-License-Identifier: Apache-2.0 OR MIT OR Unlicense // The binning stage of the pipeline. // // Each workgroup processes N_TILE paths. // Each thread processes one path and calculates a N_TILE_X x N_TILE_Y coverage mask // based on the path bounding box to bin the paths. #version 450 #extension GL_GOOGLE_include_directive : enable #include "mem.h" #include "setup.h" layout(local_size_x = N_TILE, local_size_y = 1) in; layout(set = 0, binding = 1) readonly buffer ConfigBuf { Config conf; }; #include "annotated.h" #include "bins.h" // scale factors useful for converting coordinates to bins #define SX (1.0 / float(N_TILE_X * TILE_WIDTH_PX)) #define SY (1.0 / float(N_TILE_Y * TILE_HEIGHT_PX)) // Constant not available in GLSL. Also consider uintBitsToFloat(0x7f800000) #define INFINITY (1.0 / 0.0) // Note: cudaraster has N_TILE + 1 to cut down on bank conflicts. // Bitmaps are sliced (256bit into 8 (N_SLICE) 32bit submaps) shared uint bitmaps[N_SLICE][N_TILE]; shared uint count[N_SLICE][N_TILE]; shared Alloc sh_chunk_alloc[N_TILE]; shared bool sh_alloc_failed; void main() { uint my_n_elements = conf.n_elements; uint my_partition = gl_WorkGroupID.x; for (uint i = 0; i < N_SLICE; i++) { bitmaps[i][gl_LocalInvocationID.x] = 0; } if (gl_LocalInvocationID.x == 0) { sh_alloc_failed = false; } barrier(); // Read inputs and determine coverage of bins uint element_ix = my_partition * N_TILE + gl_LocalInvocationID.x; AnnotatedRef ref = AnnotatedRef(conf.anno_alloc.offset + element_ix * Annotated_size); uint tag = Annotated_Nop; if (element_ix < my_n_elements) { tag = Annotated_tag(conf.anno_alloc, ref).tag; } int x0 = 0, y0 = 0, x1 = 0, y1 = 0; switch (tag) { case Annotated_Color: case Annotated_LinGradient: case Annotated_Image: case Annotated_BeginClip: case Annotated_EndClip: // Note: we take advantage of the fact that these drawing elements // have the bbox at the same place in their layout. AnnoEndClip clip = Annotated_EndClip_read(conf.anno_alloc, ref); x0 = int(floor(clip.bbox.x * SX)); y0 = int(floor(clip.bbox.y * SY)); x1 = int(ceil(clip.bbox.z * SX)); y1 = int(ceil(clip.bbox.w * SY)); break; } // At this point, we run an iterator over the coverage area, // trying to keep divergence low. // Right now, it's just a bbox, but we'll get finer with // segments. uint width_in_bins = (conf.width_in_tiles + N_TILE_X - 1)/N_TILE_X; uint height_in_bins = (conf.height_in_tiles + N_TILE_Y - 1)/N_TILE_Y; x0 = clamp(x0, 0, int(width_in_bins)); x1 = clamp(x1, x0, int(width_in_bins)); y0 = clamp(y0, 0, int(height_in_bins)); y1 = clamp(y1, y0, int(height_in_bins)); if (x0 == x1) y1 = y0; int x = x0, y = y0; uint my_slice = gl_LocalInvocationID.x / 32; uint my_mask = 1u << (gl_LocalInvocationID.x & 31); while (y < y1) { atomicOr(bitmaps[my_slice][y * width_in_bins + x], my_mask); x++; if (x == x1) { x = x0; y++; } } barrier(); // Allocate output segments. uint element_count = 0; for (uint i = 0; i < N_SLICE; i++) { element_count += bitCount(bitmaps[i][gl_LocalInvocationID.x]); count[i][gl_LocalInvocationID.x] = element_count; } // element_count is number of elements covering bin for this invocation. Alloc chunk_alloc = new_alloc(0, 0, true); if (element_count != 0) { // TODO: aggregate atomic adds (subgroup is probably fastest) MallocResult chunk = malloc(element_count * BinInstance_size); chunk_alloc = chunk.alloc; sh_chunk_alloc[gl_LocalInvocationID.x] = chunk_alloc; if (chunk.failed) { sh_alloc_failed = true; } } // Note: it might be more efficient for reading to do this in the // other order (each bin is a contiguous sequence of partitions) uint out_ix = (conf.bin_alloc.offset >> 2) + (my_partition * N_TILE + gl_LocalInvocationID.x) * 2; write_mem(conf.bin_alloc, out_ix, element_count); write_mem(conf.bin_alloc, out_ix + 1, chunk_alloc.offset); barrier(); if (sh_alloc_failed || mem_error != NO_ERROR) { return; } // Use similar strategy as Laine & Karras paper; loop over bbox of bins // touched by this element x = x0; y = y0; while (y < y1) { uint bin_ix = y * width_in_bins + x; uint out_mask = bitmaps[my_slice][bin_ix]; if ((out_mask & my_mask) != 0) { uint idx = bitCount(out_mask & (my_mask - 1)); if (my_slice > 0) { idx += count[my_slice - 1][bin_ix]; } Alloc out_alloc = sh_chunk_alloc[bin_ix]; uint out_offset = out_alloc.offset + idx * BinInstance_size; BinInstance_write(out_alloc, BinInstanceRef(out_offset), BinInstance(element_ix)); } x++; if (x == x1) { x = x0; y++; } } }