//! Vulkan implemenation of HAL trait. use std::borrow::Cow; use std::ffi::{CStr, CString}; use std::sync::Arc; use ash::extensions::{ext::DebugUtils, khr}; use ash::version::{DeviceV1_0, EntryV1_0, InstanceV1_0}; use ash::{vk, Device, Entry, Instance}; use once_cell::sync::Lazy; use crate::{Device as DeviceTrait, Error, ImageLayout}; pub struct VkInstance { /// Retain the dynamic lib. #[allow(unused)] entry: Entry, instance: Instance, _dbg_loader: Option, _dbg_callbk: Option, } pub struct VkDevice { device: Arc, physical_device: vk::PhysicalDevice, device_mem_props: vk::PhysicalDeviceMemoryProperties, queue: vk::Queue, qfi: u32, timestamp_period: f32, } struct RawDevice { device: Device, } pub struct VkSurface { surface: vk::SurfaceKHR, surface_fn: khr::Surface, } pub struct VkSwapchain { swapchain: vk::SwapchainKHR, swapchain_fn: khr::Swapchain, present_queue: vk::Queue, acquisition_idx: usize, acquisition_semaphores: Vec, // same length as `images` images: Vec, extent: vk::Extent2D, } /// A handle to a buffer. /// /// There is no lifetime tracking at this level; the caller is responsible /// for destroying the buffer at the appropriate time. pub struct Buffer { buffer: vk::Buffer, buffer_memory: vk::DeviceMemory, size: u64, } pub struct Image { image: vk::Image, // Not used now but probably will be for destruction. _image_memory: vk::DeviceMemory, image_view: vk::ImageView, extent: vk::Extent3D, } pub struct Pipeline { pipeline: vk::Pipeline, descriptor_set_layout: vk::DescriptorSetLayout, pipeline_layout: vk::PipelineLayout, } pub struct DescriptorSet { descriptor_set: vk::DescriptorSet, } pub struct CmdBuf { cmd_buf: vk::CommandBuffer, device: Arc, } pub struct QueryPool { pool: vk::QueryPool, n_queries: u32, } #[derive(Clone, Copy)] pub struct MemFlags(vk::MemoryPropertyFlags); unsafe extern "system" fn vulkan_debug_callback( message_severity: vk::DebugUtilsMessageSeverityFlagsEXT, message_type: vk::DebugUtilsMessageTypeFlagsEXT, p_callback_data: *const vk::DebugUtilsMessengerCallbackDataEXT, _user_data: *mut std::os::raw::c_void, ) -> vk::Bool32 { let callback_data = &*p_callback_data; let message_id_number: i32 = callback_data.message_id_number as i32; let message_id_name = if callback_data.p_message_id_name.is_null() { Cow::from("") } else { CStr::from_ptr(callback_data.p_message_id_name).to_string_lossy() }; let message = if callback_data.p_message.is_null() { Cow::from("") } else { CStr::from_ptr(callback_data.p_message).to_string_lossy() }; println!( "{:?}:\n{:?} [{} ({})] : {}\n", message_severity, message_type, message_id_name, message_id_number, message, ); vk::FALSE } static LAYERS: Lazy> = Lazy::new(|| { let mut layers: Vec<&'static CStr> = vec![]; if cfg!(debug_assertions) { layers.push(CStr::from_bytes_with_nul(b"VK_LAYER_KHRONOS_validation\0").unwrap()); } layers }); static EXTS: Lazy> = Lazy::new(|| { let mut exts: Vec<&'static CStr> = vec![]; if cfg!(debug_assertions) { exts.push(DebugUtils::name()); } exts }); impl VkInstance { /// Create a new instance. /// /// There's more to be done to make this suitable for integration with other /// systems, but for now the goal is to make things simple. /// /// The caller is responsible for making sure that window which owns the raw window handle /// outlives the surface. pub fn new( window_handle: Option<&dyn raw_window_handle::HasRawWindowHandle>, ) -> Result<(VkInstance, Option), Error> { unsafe { let app_name = CString::new("VkToy").unwrap(); let entry = Entry::new()?; let exist_layers = entry.enumerate_instance_layer_properties()?; let layers = LAYERS .iter() .filter_map(|&lyr| { exist_layers .iter() .find(|x| CStr::from_ptr(x.layer_name.as_ptr()) == lyr) .map(|_| lyr.as_ptr()) .or_else(|| { println!( "Unable to find layer: {}, have you installed the Vulkan SDK?", lyr.to_string_lossy() ); None }) }) .collect::>(); let exist_exts = entry.enumerate_instance_extension_properties()?; let mut exts = EXTS .iter() .filter_map(|&ext| { exist_exts .iter() .find(|x| CStr::from_ptr(x.extension_name.as_ptr()) == ext) .map(|_| ext.as_ptr()) .or_else(|| { println!( "Unable to find extension: {}, have you installed the Vulkan SDK?", ext.to_string_lossy() ); None }) }) .collect::>(); let surface_extensions = match window_handle { Some(ref handle) => ash_window::enumerate_required_extensions(*handle)?, None => vec![], }; for extension in surface_extensions { exts.push(extension.as_ptr()); } let instance = entry.create_instance( &vk::InstanceCreateInfo::builder() .application_info( &vk::ApplicationInfo::builder() .application_name(&app_name) .application_version(0) .engine_name(&app_name) .api_version(vk::make_version(1, 0, 0)), ) .enabled_layer_names(&layers) .enabled_extension_names(&exts), None, )?; let (_dbg_loader, _dbg_callbk) = if cfg!(debug_assertions) { let dbg_info = vk::DebugUtilsMessengerCreateInfoEXT::builder() .message_severity( vk::DebugUtilsMessageSeverityFlagsEXT::ERROR | vk::DebugUtilsMessageSeverityFlagsEXT::WARNING, ) .message_type(vk::DebugUtilsMessageTypeFlagsEXT::all()) .pfn_user_callback(Some(vulkan_debug_callback)); let dbg_loader = DebugUtils::new(&entry, &instance); let dbg_callbk = dbg_loader .create_debug_utils_messenger(&dbg_info, None) .unwrap(); (Some(dbg_loader), Some(dbg_callbk)) } else { (None, None) }; let vk_surface = match window_handle { Some(handle) => Some(VkSurface { surface: ash_window::create_surface(&entry, &instance, handle, None)?, surface_fn: khr::Surface::new(&entry, &instance), }), None => None, }; let vk_instance = VkInstance { entry, instance, _dbg_loader, _dbg_callbk, }; Ok((vk_instance, vk_surface)) } } /// Create a device from the instance, suitable for compute, with an optional surface. /// /// # Safety /// /// The caller is responsible for making sure that the instance outlives the device /// and surface. We could enforce that, for example having an `Arc` of the raw instance, /// but for now keep things simple. pub unsafe fn device(&self, surface: Option<&VkSurface>) -> Result { let devices = self.instance.enumerate_physical_devices()?; let (pdevice, qfi) = choose_compute_device(&self.instance, &devices, surface).ok_or("no suitable device")?; let queue_priorities = [1.0]; let queue_create_infos = [vk::DeviceQueueCreateInfo::builder() .queue_family_index(qfi) .queue_priorities(&queue_priorities) .build()]; let extensions = match surface { Some(_) => vec![khr::Swapchain::name().as_ptr()], None => vec![], }; let create_info = vk::DeviceCreateInfo::builder() .queue_create_infos(&queue_create_infos) .enabled_extension_names(&extensions) .build(); let device = self.instance.create_device(pdevice, &create_info, None)?; let device_mem_props = self.instance.get_physical_device_memory_properties(pdevice); let queue_index = 0; let queue = device.get_device_queue(qfi, queue_index); let device = Arc::new(RawDevice { device }); let props = self.instance.get_physical_device_properties(pdevice); let timestamp_period = props.limits.timestamp_period; Ok(VkDevice { device, physical_device: pdevice, device_mem_props, qfi, queue, timestamp_period, }) } pub unsafe fn swapchain( &self, device: &VkDevice, surface: &VkSurface, ) -> Result { let formats = surface .surface_fn .get_physical_device_surface_formats(device.physical_device, surface.surface)?; let surface_format = formats .iter() .map(|surface_fmt| match surface_fmt.format { vk::Format::UNDEFINED => { vk::SurfaceFormatKHR { format: vk::Format::B8G8R8A8_UNORM, // most common format on desktop color_space: surface_fmt.color_space, } } _ => *surface_fmt, }) .next() .ok_or("no surface format found")?; let capabilities = surface .surface_fn .get_physical_device_surface_capabilities(device.physical_device, surface.surface)?; let present_modes = surface .surface_fn .get_physical_device_surface_present_modes(device.physical_device, surface.surface)?; let present_mode = present_modes .into_iter() .find(|mode| mode == &vk::PresentModeKHR::MAILBOX) .unwrap_or(vk::PresentModeKHR::FIFO); let image_count = 2; // TODO let extent = capabilities.current_extent; // TODO: wayland for example will complain here .. let create_info = vk::SwapchainCreateInfoKHR::builder() .surface(surface.surface) .min_image_count(image_count) .image_format(surface_format.format) .image_color_space(surface_format.color_space) .image_extent(extent) .image_array_layers(1) .image_usage(vk::ImageUsageFlags::TRANSFER_DST) .image_sharing_mode(vk::SharingMode::EXCLUSIVE) .pre_transform(vk::SurfaceTransformFlagsKHR::IDENTITY) .composite_alpha(vk::CompositeAlphaFlagsKHR::OPAQUE) .present_mode(present_mode) .clipped(true); let swapchain_fn = khr::Swapchain::new(&self.instance, &device.device.device); let swapchain = swapchain_fn.create_swapchain(&create_info, None)?; let images = swapchain_fn.get_swapchain_images(swapchain)?; let acquisition_semaphores = (0..images.len()) .map(|_| device.create_semaphore()) .collect::, Error>>()?; Ok(VkSwapchain { swapchain, swapchain_fn, present_queue: device.queue, images, acquisition_semaphores, acquisition_idx: 0, extent, }) } } impl crate::Device for VkDevice { type Buffer = Buffer; type Image = Image; type CmdBuf = CmdBuf; type DescriptorSet = DescriptorSet; type Pipeline = Pipeline; type QueryPool = QueryPool; type MemFlags = MemFlags; type Fence = vk::Fence; type Semaphore = vk::Semaphore; fn create_buffer(&self, size: u64, mem_flags: MemFlags) -> Result { unsafe { let device = &self.device.device; let buffer = device.create_buffer( &vk::BufferCreateInfo::builder() .size(size) .usage( vk::BufferUsageFlags::STORAGE_BUFFER | vk::BufferUsageFlags::TRANSFER_SRC | vk::BufferUsageFlags::TRANSFER_DST, ) .sharing_mode(vk::SharingMode::EXCLUSIVE), None, )?; let mem_requirements = device.get_buffer_memory_requirements(buffer); let mem_type = find_memory_type( mem_requirements.memory_type_bits, mem_flags.0, &self.device_mem_props, ) .unwrap(); // TODO: proper error let buffer_memory = device.allocate_memory( &vk::MemoryAllocateInfo::builder() .allocation_size(mem_requirements.size) .memory_type_index(mem_type), None, )?; device.bind_buffer_memory(buffer, buffer_memory, 0)?; Ok(Buffer { buffer, buffer_memory, size, }) } } unsafe fn create_image2d( &self, width: u32, height: u32, mem_flags: Self::MemFlags, ) -> Result { let device = &self.device.device; let extent = vk::Extent3D { width, height, depth: 1, }; let image = device.create_image( &vk::ImageCreateInfo::builder() .image_type(vk::ImageType::TYPE_2D) .format(vk::Format::R8G8B8A8_UNORM) .extent(extent) .mip_levels(1) .array_layers(1) .samples(vk::SampleCountFlags::TYPE_1) .tiling(vk::ImageTiling::OPTIMAL) .initial_layout(vk::ImageLayout::UNDEFINED) .usage(vk::ImageUsageFlags::STORAGE | vk::ImageUsageFlags::TRANSFER_SRC) // write in compute and blit src .sharing_mode(vk::SharingMode::EXCLUSIVE), None, )?; let mem_requirements = device.get_image_memory_requirements(image); let mem_type = find_memory_type( mem_requirements.memory_type_bits, mem_flags.0, &self.device_mem_props, ) .unwrap(); // TODO: proper error let image_memory = device.allocate_memory( &vk::MemoryAllocateInfo::builder() .allocation_size(mem_requirements.size) .memory_type_index(mem_type), None, )?; device.bind_image_memory(image, image_memory, 0)?; let image_view = device.create_image_view( &vk::ImageViewCreateInfo::builder() .view_type(vk::ImageViewType::TYPE_2D) .image(image) .format(vk::Format::R8G8B8A8_UNORM) .subresource_range(vk::ImageSubresourceRange { aspect_mask: vk::ImageAspectFlags::COLOR, base_mip_level: 0, level_count: 1, base_array_layer: 0, layer_count: 1, }) .components(vk::ComponentMapping { r: vk::ComponentSwizzle::IDENTITY, g: vk::ComponentSwizzle::IDENTITY, b: vk::ComponentSwizzle::IDENTITY, a: vk::ComponentSwizzle::IDENTITY, }) .build(), None, )?; Ok(Image { image, _image_memory: image_memory, image_view, extent, }) } unsafe fn create_fence(&self, signaled: bool) -> Result { let device = &self.device.device; let mut flags = vk::FenceCreateFlags::empty(); if signaled { flags |= vk::FenceCreateFlags::SIGNALED; } Ok(device.create_fence(&vk::FenceCreateInfo::builder().flags(flags).build(), None)?) } unsafe fn create_semaphore(&self) -> Result { let device = &self.device.device; Ok(device.create_semaphore(&vk::SemaphoreCreateInfo::default(), None)?) } unsafe fn wait_and_reset(&self, fences: &[Self::Fence]) -> Result<(), Error> { let device = &self.device.device; device.wait_for_fences(fences, true, !0)?; device.reset_fences(fences)?; Ok(()) } /// This creates a pipeline that runs over the buffer. /// /// The descriptor set layout is just some number of storage buffers and storage images (this might change). unsafe fn create_simple_compute_pipeline( &self, code: &[u8], n_buffers: u32, n_images: u32, ) -> Result { let device = &self.device.device; let mut bindings = Vec::new(); for i in 0..n_buffers { bindings.push( vk::DescriptorSetLayoutBinding::builder() .binding(i) .descriptor_type(vk::DescriptorType::STORAGE_BUFFER) .descriptor_count(1) .stage_flags(vk::ShaderStageFlags::COMPUTE) .build(), ); } for i in n_buffers..n_buffers + n_images { bindings.push( vk::DescriptorSetLayoutBinding::builder() .binding(i) .descriptor_type(vk::DescriptorType::STORAGE_IMAGE) .descriptor_count(1) .stage_flags(vk::ShaderStageFlags::COMPUTE) .build(), ); } let descriptor_set_layout = device.create_descriptor_set_layout( &vk::DescriptorSetLayoutCreateInfo::builder().bindings(&bindings), None, )?; let descriptor_set_layouts = [descriptor_set_layout]; // Create compute pipeline. let code_u32 = convert_u32_vec(code); let compute_shader_module = device .create_shader_module(&vk::ShaderModuleCreateInfo::builder().code(&code_u32), None)?; let entry_name = CString::new("main").unwrap(); let pipeline_layout = device.create_pipeline_layout( &vk::PipelineLayoutCreateInfo::builder().set_layouts(&descriptor_set_layouts), None, )?; let pipeline = device .create_compute_pipelines( vk::PipelineCache::null(), &[vk::ComputePipelineCreateInfo::builder() .stage( vk::PipelineShaderStageCreateInfo::builder() .stage(vk::ShaderStageFlags::COMPUTE) .module(compute_shader_module) .name(&entry_name) .build(), ) .layout(pipeline_layout) .build()], None, ) .map_err(|(_pipeline, err)| err)?[0]; Ok(Pipeline { pipeline, pipeline_layout, descriptor_set_layout, }) } unsafe fn create_descriptor_set( &self, pipeline: &Pipeline, bufs: &[&Buffer], images: &[&Image], ) -> Result { let device = &self.device.device; let mut descriptor_pool_sizes = Vec::new(); if !bufs.is_empty() { descriptor_pool_sizes.push( vk::DescriptorPoolSize::builder() .ty(vk::DescriptorType::STORAGE_BUFFER) .descriptor_count(bufs.len() as u32) .build(), ); } if !images.is_empty() { descriptor_pool_sizes.push( vk::DescriptorPoolSize::builder() .ty(vk::DescriptorType::STORAGE_IMAGE) .descriptor_count(images.len() as u32) .build(), ); } let descriptor_pool = device.create_descriptor_pool( &vk::DescriptorPoolCreateInfo::builder() .pool_sizes(&descriptor_pool_sizes) .max_sets(1), None, )?; let descriptor_set_layouts = [pipeline.descriptor_set_layout]; let descriptor_sets = device .allocate_descriptor_sets( &vk::DescriptorSetAllocateInfo::builder() .descriptor_pool(descriptor_pool) .set_layouts(&descriptor_set_layouts), ) .unwrap(); for (i, buf) in bufs.iter().enumerate() { let buf_info = vk::DescriptorBufferInfo::builder() .buffer(buf.buffer) .offset(0) .range(vk::WHOLE_SIZE) .build(); device.update_descriptor_sets( &[vk::WriteDescriptorSet::builder() .dst_set(descriptor_sets[0]) .dst_binding(i as u32) .descriptor_type(vk::DescriptorType::STORAGE_BUFFER) .buffer_info(&[buf_info]) .build()], &[], ); } for (i, image) in images.iter().enumerate() { let binding = i + bufs.len(); let image_info = vk::DescriptorImageInfo::builder() .sampler(vk::Sampler::null()) .image_view(image.image_view) .image_layout(vk::ImageLayout::GENERAL) .build(); device.update_descriptor_sets( &[vk::WriteDescriptorSet::builder() .dst_set(descriptor_sets[0]) .dst_binding(binding as u32) .descriptor_type(vk::DescriptorType::STORAGE_IMAGE) .image_info(&[image_info]) .build()], &[], ); } Ok(DescriptorSet { descriptor_set: descriptor_sets[0], }) } fn create_cmd_buf(&self) -> Result { unsafe { let device = &self.device.device; let command_pool = device.create_command_pool( &vk::CommandPoolCreateInfo::builder() .flags(vk::CommandPoolCreateFlags::RESET_COMMAND_BUFFER) .queue_family_index(self.qfi), None, )?; let cmd_buf = device.allocate_command_buffers( &vk::CommandBufferAllocateInfo::builder() .command_pool(command_pool) .level(vk::CommandBufferLevel::PRIMARY) .command_buffer_count(1), )?[0]; Ok(CmdBuf { cmd_buf, device: self.device.clone(), }) } } /// Create a query pool for timestamp queries. fn create_query_pool(&self, n_queries: u32) -> Result { unsafe { let device = &self.device.device; let pool = device.create_query_pool( &vk::QueryPoolCreateInfo::builder() .query_type(vk::QueryType::TIMESTAMP) .query_count(n_queries), None, )?; Ok(QueryPool { pool, n_queries }) } } unsafe fn reap_query_pool(&self, pool: &Self::QueryPool) -> Result, Error> { let device = &self.device.device; let mut buf = vec![0u64; pool.n_queries as usize]; device.get_query_pool_results( pool.pool, 0, pool.n_queries, &mut buf, vk::QueryResultFlags::TYPE_64, )?; let ts0 = buf[0]; let tsp = self.timestamp_period as f64 * 1e-9; let result = buf[1..] .iter() .map(|ts| ts.wrapping_sub(ts0) as f64 * tsp) .collect(); Ok(result) } /// Run the command buffer. /// /// This version simply blocks until it's complete. unsafe fn run_cmd_buf( &self, cmd_buf: &CmdBuf, wait_semaphores: &[Self::Semaphore], signal_semaphores: &[Self::Semaphore], fence: Option<&Self::Fence>, ) -> Result<(), Error> { let device = &self.device.device; let fence = match fence { Some(fence) => *fence, None => vk::Fence::null(), }; let wait_stages = wait_semaphores .iter() .map(|_| vk::PipelineStageFlags::ALL_COMMANDS) .collect::>(); device.queue_submit( self.queue, &[vk::SubmitInfo::builder() .command_buffers(&[cmd_buf.cmd_buf]) .wait_semaphores(wait_semaphores) .signal_semaphores(signal_semaphores) .wait_dst_stage_mask(&wait_stages) .build()], fence, )?; Ok(()) } unsafe fn read_buffer( &self, buffer: &Buffer, result: &mut Vec, ) -> Result<(), Error> { let device = &self.device.device; let size = buffer.size as usize / std::mem::size_of::(); let buf = device.map_memory( buffer.buffer_memory, 0, size as u64, vk::MemoryMapFlags::empty(), )?; if size > result.len() { result.reserve(size - result.len()); } std::ptr::copy_nonoverlapping(buf as *const T, result.as_mut_ptr(), size); result.set_len(size); device.unmap_memory(buffer.buffer_memory); Ok(()) } unsafe fn write_buffer(&self, buffer: &Buffer, contents: &[T]) -> Result<(), Error> { let device = &self.device.device; let buf = device.map_memory( buffer.buffer_memory, 0, std::mem::size_of_val(contents) as u64, vk::MemoryMapFlags::empty(), )?; std::ptr::copy_nonoverlapping(contents.as_ptr(), buf as *mut T, contents.len()); device.unmap_memory(buffer.buffer_memory); Ok(()) } } impl crate::CmdBuf for CmdBuf { unsafe fn begin(&mut self) { self.device .device .begin_command_buffer( self.cmd_buf, &vk::CommandBufferBeginInfo::builder() .flags(vk::CommandBufferUsageFlags::ONE_TIME_SUBMIT), ) .unwrap(); } unsafe fn finish(&mut self) { self.device.device.end_command_buffer(self.cmd_buf).unwrap(); } unsafe fn dispatch( &mut self, pipeline: &Pipeline, descriptor_set: &DescriptorSet, size: (u32, u32, u32), ) { let device = &self.device.device; device.cmd_bind_pipeline( self.cmd_buf, vk::PipelineBindPoint::COMPUTE, pipeline.pipeline, ); device.cmd_bind_descriptor_sets( self.cmd_buf, vk::PipelineBindPoint::COMPUTE, pipeline.pipeline_layout, 0, &[descriptor_set.descriptor_set], &[], ); device.cmd_dispatch(self.cmd_buf, size.0, size.1, size.2); } /// Insert a pipeline barrier for all memory accesses. unsafe fn memory_barrier(&mut self) { let device = &self.device.device; device.cmd_pipeline_barrier( self.cmd_buf, vk::PipelineStageFlags::ALL_COMMANDS, vk::PipelineStageFlags::ALL_COMMANDS, vk::DependencyFlags::empty(), &[vk::MemoryBarrier::builder() .src_access_mask(vk::AccessFlags::MEMORY_WRITE) .dst_access_mask(vk::AccessFlags::MEMORY_READ) .build()], &[], &[], ); } unsafe fn image_barrier( &mut self, image: &Image, src_layout: ImageLayout, dst_layout: ImageLayout, ) { let device = &self.device.device; device.cmd_pipeline_barrier( self.cmd_buf, vk::PipelineStageFlags::ALL_COMMANDS, vk::PipelineStageFlags::ALL_COMMANDS, vk::DependencyFlags::empty(), &[], &[], &[vk::ImageMemoryBarrier::builder() .image(image.image) .src_access_mask(vk::AccessFlags::MEMORY_WRITE) .dst_access_mask(vk::AccessFlags::MEMORY_READ) .old_layout(map_image_layout(src_layout)) .new_layout(map_image_layout(dst_layout)) .subresource_range(vk::ImageSubresourceRange { aspect_mask: vk::ImageAspectFlags::COLOR, base_mip_level: 0, level_count: vk::REMAINING_MIP_LEVELS, base_array_layer: 0, layer_count: vk::REMAINING_MIP_LEVELS, }) .build()], ); } unsafe fn clear_buffer(&self, buffer: &Buffer) { let device = &self.device.device; device.cmd_fill_buffer(self.cmd_buf, buffer.buffer, 0, vk::WHOLE_SIZE, 0); } unsafe fn copy_buffer(&self, src: &Buffer, dst: &Buffer) { let device = &self.device.device; let size = src.size.min(dst.size); device.cmd_copy_buffer( self.cmd_buf, src.buffer, dst.buffer, &[vk::BufferCopy::builder().size(size).build()], ); } unsafe fn copy_image_to_buffer(&self, src: &Image, dst: &Buffer) { let device = &self.device.device; device.cmd_copy_image_to_buffer( self.cmd_buf, src.image, vk::ImageLayout::TRANSFER_SRC_OPTIMAL, dst.buffer, &[vk::BufferImageCopy { buffer_offset: 0, buffer_row_length: 0, // tight packing buffer_image_height: 0, // tight packing image_subresource: vk::ImageSubresourceLayers { aspect_mask: vk::ImageAspectFlags::COLOR, mip_level: 0, base_array_layer: 0, layer_count: 1, }, image_offset: vk::Offset3D { x: 0, y: 0, z: 0 }, image_extent: src.extent, }], ); } unsafe fn blit_image(&self, src: &Image, dst: &Image) { let device = &self.device.device; device.cmd_blit_image( self.cmd_buf, src.image, vk::ImageLayout::TRANSFER_SRC_OPTIMAL, dst.image, vk::ImageLayout::TRANSFER_DST_OPTIMAL, &[vk::ImageBlit { src_subresource: vk::ImageSubresourceLayers { aspect_mask: vk::ImageAspectFlags::COLOR, mip_level: 0, base_array_layer: 0, layer_count: 1, }, src_offsets: [ vk::Offset3D { x: 0, y: 0, z: 0 }, vk::Offset3D { x: src.extent.width as i32, y: src.extent.height as i32, z: src.extent.depth as i32, }, ], dst_subresource: vk::ImageSubresourceLayers { aspect_mask: vk::ImageAspectFlags::COLOR, mip_level: 0, base_array_layer: 0, layer_count: 1, }, dst_offsets: [ vk::Offset3D { x: 0, y: 0, z: 0 }, vk::Offset3D { x: dst.extent.width as i32, y: dst.extent.height as i32, z: dst.extent.depth as i32, }, ], }], vk::Filter::LINEAR, ); } unsafe fn reset_query_pool(&mut self, pool: &QueryPool) { let device = &self.device.device; device.cmd_reset_query_pool(self.cmd_buf, pool.pool, 0, pool.n_queries); } unsafe fn write_timestamp(&mut self, pool: &QueryPool, query: u32) { let device = &self.device.device; device.cmd_write_timestamp( self.cmd_buf, vk::PipelineStageFlags::COMPUTE_SHADER, pool.pool, query, ); } } impl crate::MemFlags for MemFlags { fn device_local() -> Self { MemFlags(vk::MemoryPropertyFlags::DEVICE_LOCAL) } fn host_coherent() -> Self { MemFlags(vk::MemoryPropertyFlags::HOST_VISIBLE | vk::MemoryPropertyFlags::HOST_COHERENT) } } impl VkSwapchain { pub unsafe fn next(&mut self) -> Result<(usize, vk::Semaphore), Error> { let acquisition_semaphore = self.acquisition_semaphores[self.acquisition_idx]; let (image_idx, _suboptimal) = self.swapchain_fn.acquire_next_image( self.swapchain, !0, self.acquisition_semaphores[self.acquisition_idx], vk::Fence::null(), )?; self.acquisition_idx = (self.acquisition_idx + 1) % self.acquisition_semaphores.len(); Ok((image_idx as usize, acquisition_semaphore)) } pub unsafe fn image(&self, idx: usize) -> Image { Image { image: self.images[idx], _image_memory: vk::DeviceMemory::null(), image_view: vk::ImageView::null(), extent: vk::Extent3D { width: self.extent.width, height: self.extent.height, depth: 1, }, } } pub unsafe fn present( &self, image_idx: usize, semaphores: &[vk::Semaphore], ) -> Result { Ok(self.swapchain_fn.queue_present( self.present_queue, &vk::PresentInfoKHR::builder() .swapchains(&[self.swapchain]) .image_indices(&[image_idx as u32]) .wait_semaphores(semaphores) .build(), )?) } } unsafe fn choose_compute_device( instance: &Instance, devices: &[vk::PhysicalDevice], surface: Option<&VkSurface>, ) -> Option<(vk::PhysicalDevice, u32)> { for pdevice in devices { let props = instance.get_physical_device_queue_family_properties(*pdevice); for (ix, info) in props.iter().enumerate() { // Check for surface presentation support if let Some(surface) = surface { if !surface .surface_fn .get_physical_device_surface_support(*pdevice, ix as u32, surface.surface) .unwrap() { continue; } } if info.queue_flags.contains(vk::QueueFlags::COMPUTE) { return Some((*pdevice, ix as u32)); } } } None } fn find_memory_type( memory_type_bits: u32, property_flags: vk::MemoryPropertyFlags, props: &vk::PhysicalDeviceMemoryProperties, ) -> Option { for i in 0..props.memory_type_count { if (memory_type_bits & (1 << i)) != 0 && props.memory_types[i as usize] .property_flags .contains(property_flags) { return Some(i); } } None } fn convert_u32_vec(src: &[u8]) -> Vec { src.chunks(4) .map(|chunk| { let mut buf = [0; 4]; buf.copy_from_slice(chunk); u32::from_le_bytes(buf) }) .collect() } fn map_image_layout(layout: ImageLayout) -> vk::ImageLayout { match layout { ImageLayout::Undefined => vk::ImageLayout::UNDEFINED, ImageLayout::Present => vk::ImageLayout::PRESENT_SRC_KHR, ImageLayout::BlitSrc => vk::ImageLayout::TRANSFER_SRC_OPTIMAL, ImageLayout::BlitDst => vk::ImageLayout::TRANSFER_DST_OPTIMAL, ImageLayout::General => vk::ImageLayout::GENERAL, } }