// SPDX-License-Identifier: Apache-2.0 OR MIT OR Unlicense // This is "kernel 4" in a 4-kernel pipeline. It renders the commands // in the per-tile command list to an image. // Right now, this kernel stores the image in a buffer, but a better // plan is to use a texture. This is because of limited support. #version 450 #extension GL_GOOGLE_include_directive : enable // We can do rendering either in sRGB colorspace (for compatibility) // or in a linear colorspace, with conversions to sRGB (which will give // higher quality antialiasing among other things). #define DO_SRGB_CONVERSION 0 #include "mem.h" #include "setup.h" #define CHUNK_X 2 #define CHUNK_Y 4 #define CHUNK (CHUNK_X * CHUNK_Y) #define CHUNK_DX (TILE_WIDTH_PX / CHUNK_X) #define CHUNK_DY (TILE_HEIGHT_PX / CHUNK_Y) layout(local_size_x = CHUNK_DX, local_size_y = CHUNK_DY) in; layout(set = 0, binding = 1) restrict readonly buffer ConfigBuf { Config conf; }; #ifdef GRAY layout(r8, set = 0, binding = 2) uniform restrict writeonly image2D image; #else layout(rgba8, set = 0, binding = 2) uniform restrict writeonly image2D image; #endif layout(rgba8, set = 0, binding = 3) uniform restrict readonly image2D image_atlas; layout(rgba8, set = 0, binding = 4) uniform restrict readonly image2D gradients; #include "ptcl.h" #include "tile.h" #include "blend.h" #define MAX_BLEND_STACK 128 mediump vec3 tosRGB(mediump vec3 rgb) { #if DO_SRGB_CONVERSION bvec3 cutoff = greaterThanEqual(rgb, vec3(0.0031308)); mediump vec3 below = vec3(12.92) * rgb; mediump vec3 above = vec3(1.055) * pow(rgb, vec3(0.41666)) - vec3(0.055); return mix(below, above, cutoff); #else return rgb; #endif } mediump vec3 fromsRGB(mediump vec3 srgb) { #if DO_SRGB_CONVERSION // Formula from EXT_sRGB. bvec3 cutoff = greaterThanEqual(srgb, vec3(0.04045)); mediump vec3 below = srgb / vec3(12.92); mediump vec3 above = pow((srgb + vec3(0.055)) / vec3(1.055), vec3(2.4)); return mix(below, above, cutoff); #else return srgb; #endif } // unpacksRGB unpacks a color in the sRGB color space to a vec4 in the linear color // space. mediump vec4 unpacksRGB(uint srgba) { mediump vec4 color = unpackUnorm4x8(srgba).wzyx; return vec4(fromsRGB(color.rgb), color.a); } // packsRGB packs a color in the linear color space into its 8-bit sRGB equivalent. uint packsRGB(mediump vec4 rgba) { rgba = vec4(tosRGB(rgba.rgb), rgba.a); return packUnorm4x8(rgba.wzyx); } uvec2 chunk_offset(uint i) { return uvec2(i % CHUNK_X * CHUNK_DX, i / CHUNK_X * CHUNK_DY); } mediump vec4[CHUNK] fillImage(uvec2 xy, CmdImage cmd_img) { mediump vec4 rgba[CHUNK]; for (uint i = 0; i < CHUNK; i++) { ivec2 uv = ivec2(xy + chunk_offset(i)) + cmd_img.offset; mediump vec4 fg_rgba; fg_rgba = imageLoad(image_atlas, uv); fg_rgba.rgb = fromsRGB(fg_rgba.rgb); rgba[i] = fg_rgba; } return rgba; } void main() { uint tile_ix = gl_WorkGroupID.y * conf.width_in_tiles + gl_WorkGroupID.x; Alloc cmd_alloc = slice_mem(conf.ptcl_alloc, tile_ix * PTCL_INITIAL_ALLOC, PTCL_INITIAL_ALLOC); CmdRef cmd_ref = CmdRef(cmd_alloc.offset); uvec2 xy_uint = uvec2(gl_LocalInvocationID.x + TILE_WIDTH_PX * gl_WorkGroupID.x, gl_LocalInvocationID.y + TILE_HEIGHT_PX * gl_WorkGroupID.y); vec2 xy = vec2(xy_uint); mediump vec4 rgba[CHUNK]; uint blend_stack[MAX_BLEND_STACK][CHUNK]; for (uint i = 0; i < CHUNK; i++) { rgba[i] = vec4(0.0); } mediump float area[CHUNK]; uint clip_depth = 0; bool mem_ok = mem_error == NO_ERROR; while (mem_ok) { uint tag = Cmd_tag(cmd_alloc, cmd_ref).tag; if (tag == Cmd_End) { break; } switch (tag) { case Cmd_Stroke: // Calculate distance field from all the line segments in this tile. CmdStroke stroke = Cmd_Stroke_read(cmd_alloc, cmd_ref); mediump float df[CHUNK]; for (uint k = 0; k < CHUNK; k++) df[k] = 1e9; TileSegRef tile_seg_ref = TileSegRef(stroke.tile_ref); do { TileSeg seg = TileSeg_read(new_alloc(tile_seg_ref.offset, TileSeg_size, mem_ok), tile_seg_ref); vec2 line_vec = seg.vector; for (uint k = 0; k < CHUNK; k++) { vec2 dpos = xy + vec2(0.5, 0.5) - seg.origin; dpos += vec2(chunk_offset(k)); float t = clamp(dot(line_vec, dpos) / dot(line_vec, line_vec), 0.0, 1.0); df[k] = min(df[k], length(line_vec * t - dpos)); } tile_seg_ref = seg.next; } while (tile_seg_ref.offset != 0); for (uint k = 0; k < CHUNK; k++) { area[k] = clamp(stroke.half_width + 0.5 - df[k], 0.0, 1.0); } cmd_ref.offset += 4 + CmdStroke_size; break; case Cmd_Fill: CmdFill fill = Cmd_Fill_read(cmd_alloc, cmd_ref); for (uint k = 0; k < CHUNK; k++) area[k] = float(fill.backdrop); tile_seg_ref = TileSegRef(fill.tile_ref); // Calculate coverage based on backdrop + coverage of each line segment do { TileSeg seg = TileSeg_read(new_alloc(tile_seg_ref.offset, TileSeg_size, mem_ok), tile_seg_ref); for (uint k = 0; k < CHUNK; k++) { vec2 my_xy = xy + vec2(chunk_offset(k)); vec2 start = seg.origin - my_xy; vec2 end = start + seg.vector; vec2 window = clamp(vec2(start.y, end.y), 0.0, 1.0); if (window.x != window.y) { vec2 t = (window - start.y) / seg.vector.y; vec2 xs = vec2(mix(start.x, end.x, t.x), mix(start.x, end.x, t.y)); float xmin = min(min(xs.x, xs.y), 1.0) - 1e-6; float xmax = max(xs.x, xs.y); float b = min(xmax, 1.0); float c = max(b, 0.0); float d = max(xmin, 0.0); float a = (b + 0.5 * (d * d - c * c) - xmin) / (xmax - xmin); area[k] += a * (window.x - window.y); } area[k] += sign(seg.vector.x) * clamp(my_xy.y - seg.y_edge + 1.0, 0.0, 1.0); } tile_seg_ref = seg.next; } while (tile_seg_ref.offset != 0); for (uint k = 0; k < CHUNK; k++) { area[k] = min(abs(area[k]), 1.0); } cmd_ref.offset += 4 + CmdFill_size; break; case Cmd_Solid: for (uint k = 0; k < CHUNK; k++) { area[k] = 1.0; } cmd_ref.offset += 4; break; case Cmd_Alpha: CmdAlpha alpha = Cmd_Alpha_read(cmd_alloc, cmd_ref); for (uint k = 0; k < CHUNK; k++) { area[k] = alpha.alpha; } cmd_ref.offset += 4 + CmdAlpha_size; break; case Cmd_Color: CmdColor color = Cmd_Color_read(cmd_alloc, cmd_ref); mediump vec4 fg = unpacksRGB(color.rgba_color); for (uint k = 0; k < CHUNK; k++) { mediump vec4 fg_k = fg * area[k]; rgba[k] = rgba[k] * (1.0 - fg_k.a) + fg_k; } cmd_ref.offset += 4 + CmdColor_size; break; case Cmd_LinGrad: CmdLinGrad lin = Cmd_LinGrad_read(cmd_alloc, cmd_ref); float d = lin.line_x * float(xy.x) + lin.line_y * float(xy.y) + lin.line_c; for (uint k = 0; k < CHUNK; k++) { vec2 chunk_xy = vec2(chunk_offset(k)); float my_d = d + lin.line_x * chunk_xy.x + lin.line_y * chunk_xy.y; int x = int(round(clamp(my_d, 0.0, 1.0) * float(GRADIENT_WIDTH - 1))); mediump vec4 fg_rgba = imageLoad(gradients, ivec2(x, int(lin.index))); fg_rgba.rgb = fromsRGB(fg_rgba.rgb); mediump vec4 fg_k = fg_rgba * area[k]; rgba[k] = rgba[k] * (1.0 - fg_k.a) + fg_k; } cmd_ref.offset += 4 + CmdLinGrad_size; break; case Cmd_RadGrad: CmdRadGrad rad = Cmd_RadGrad_read(cmd_alloc, cmd_ref); for (uint k = 0; k < CHUNK; k++) { vec2 my_xy = xy + vec2(chunk_offset(k)); my_xy = rad.mat.xz * my_xy.x + rad.mat.yw * my_xy.y - rad.xlat; float ba = dot(my_xy, rad.c1); float ca = rad.ra * dot(my_xy, my_xy); float t = sqrt(ba * ba + ca) - ba - rad.roff; int x = int(round(clamp(t, 0.0, 1.0) * float(GRADIENT_WIDTH - 1))); mediump vec4 fg_rgba = imageLoad(gradients, ivec2(x, int(rad.index))); fg_rgba.rgb = fromsRGB(fg_rgba.rgb); mediump vec4 fg_k = fg_rgba * area[k]; rgba[k] = rgba[k] * (1.0 - fg_k.a) + fg_k; } cmd_ref.offset += 4 + CmdRadGrad_size; break; case Cmd_Image: CmdImage fill_img = Cmd_Image_read(cmd_alloc, cmd_ref); mediump vec4 img[CHUNK] = fillImage(xy_uint, fill_img); for (uint k = 0; k < CHUNK; k++) { mediump vec4 fg_k = img[k] * area[k]; rgba[k] = rgba[k] * (1.0 - fg_k.a) + fg_k; } cmd_ref.offset += 4 + CmdImage_size; break; case Cmd_BeginClip: for (uint k = 0; k < CHUNK; k++) { // We reject any inputs that might overflow in render_ctx.rs. // The following is a sanity check so we don't corrupt memory should there be malformed inputs. uint d = min(clip_depth, MAX_BLEND_STACK - 1); blend_stack[d][k] = packsRGB(vec4(rgba[k])); rgba[k] = vec4(0.0); } clip_depth++; cmd_ref.offset += 4; break; case Cmd_EndClip: CmdEndClip end_clip = Cmd_EndClip_read(cmd_alloc, cmd_ref); uint blend_mode = uint(end_clip.blend >> 8); uint comp_mode = uint(end_clip.blend & 0xFF); clip_depth--; for (uint k = 0; k < CHUNK; k++) { uint d = min(clip_depth, MAX_BLEND_STACK - 1); mediump vec4 bg = unpacksRGB(blend_stack[d][k]); mediump vec4 fg = rgba[k] * area[k]; rgba[k] = mix_blend_compose(bg, fg, end_clip.blend); } cmd_ref.offset += 4 + CmdEndClip_size; break; case Cmd_Jump: cmd_ref = CmdRef(Cmd_Jump_read(cmd_alloc, cmd_ref).new_ref); cmd_alloc.offset = cmd_ref.offset; break; } } for (uint i = 0; i < CHUNK; i++) { #ifdef GRAY // Just store the alpha value; later we can specialize this kernel more to avoid // computing unneeded RGB colors. imageStore(image, ivec2(xy_uint + chunk_offset(i)), vec4(rgba[i].a)); #else imageStore(image, ivec2(xy_uint + chunk_offset(i)), vec4(tosRGB(rgba[i].rgb), rgba[i].a)); #endif } }