// Copyright 2022 The piet-gpu authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // Also licensed under MIT license, at your choice. use bytemuck::{Pod, Zeroable}; use core::borrow::Borrow; use core::hash::{Hash, Hasher}; /// Two dimensional point. #[derive(Copy, Clone, PartialEq, PartialOrd, Default, Debug, Pod, Zeroable)] #[repr(C)] pub struct Point { pub x: f32, pub y: f32, } impl Hash for Point { fn hash(&self, state: &mut H) { self.x.to_bits().hash(state); self.y.to_bits().hash(state); } } impl Point { pub const fn new(x: f32, y: f32) -> Self { Self { x, y } } pub fn transform(&self, affine: &Affine) -> Self { Self { x: self.x * affine.xx + self.y * affine.yx + affine.dx, y: self.y * affine.yy + self.y * affine.xy + affine.dy, } } } impl From<[f32; 2]> for Point { fn from(value: [f32; 2]) -> Self { Self::new(value[0], value[1]) } } impl From<(f32, f32)> for Point { fn from(value: (f32, f32)) -> Self { Self::new(value.0, value.1) } } /// Affine transformation matrix. #[derive(Copy, Clone, Debug, Pod, Zeroable)] #[repr(C)] pub struct Affine { pub xx: f32, pub yx: f32, pub xy: f32, pub yy: f32, pub dx: f32, pub dy: f32, } impl Affine { pub const IDENTITY: Self = Self { xx: 1.0, yx: 0.0, xy: 0.0, yy: 1.0, dx: 0.0, dy: 0.0, }; pub const fn new(elements: &[f32; 6]) -> Self { Self { xx: elements[0], yx: elements[1], xy: elements[2], yy: elements[3], dx: elements[4], dy: elements[5], } } /// Creates a new affine transform representing the specified scale along the /// x and y axes. pub fn scale(x: f32, y: f32) -> Self { Self::new(&[x, 0., 0., y, 0., 0.]) } /// Creates a new affine transform representing the specified translation. pub fn translate(x: f32, y: f32) -> Self { Self::new(&[1., 0., 0., 1., x, y]) } /// Creates a new affine transform representing a counter-clockwise /// rotation for the specified angle in radians. pub fn rotate(th: f32) -> Self { let (s, c) = th.sin_cos(); Self::new(&[c, s, -s, c, 0., 0.]) } /// Creates a new skew transform pub fn skew(x: f32, y: f32) -> Self { Self::new(&[1., x.tan(), y.tan(), 1., 0., 0.]) } pub fn around_center(&self, x: f32, y: f32) -> Self { Self::translate(x, y) * *self * Self::translate(-x, -y) } /// Transforms the specified point. pub fn transform_point(&self, point: Point) -> Point { Point { x: point.x * self.xx + point.y * self.yx + self.dx, y: point.y * self.yy + point.y * self.xy + self.dy, } } /// Compute the determinant of this transform. pub fn determinant(self) -> f32 { self.xx * self.yy - self.yx * self.xy } /// Compute the inverse transform. /// /// Produces NaN values when the determinant is zero. pub fn inverse(self) -> Self { let inv_det = self.determinant().recip(); Self::new(&[ inv_det * self.yy, -inv_det * self.yx, -inv_det * self.xy, inv_det * self.xx, inv_det * (self.xy * self.dy - self.yy * self.dx), inv_det * (self.yx * self.dx - self.xx * self.dy), ]) } } impl Default for Affine { fn default() -> Self { Self::IDENTITY } } impl std::ops::Mul for Affine { type Output = Self; fn mul(self, other: Self) -> Self { Self::new(&[ self.xx * other.xx + self.xy * other.yx, self.yx * other.xx + self.yy * other.yx, self.xx * other.xy + self.xy * other.yy, self.yx * other.xy + self.yy * other.yy, self.xx * other.dx + self.xy * other.dy + self.dx, self.yx * other.dx + self.yy * other.dy + self.dy, ]) } } /// Axis-aligned rectangle represented as minimum and maximum points. #[derive(Copy, Clone, Default, Debug, Pod, Zeroable)] #[repr(C)] pub struct Rect { pub min: Point, pub max: Point, } impl Rect { /// Creates a new rectangle that encloses the specified collection of /// points. pub fn from_points(points: I) -> Self where I: IntoIterator, I::Item: Borrow, { let mut rect = Self { min: Point::new(f32::MAX, f32::MAX), max: Point::new(f32::MIN, f32::MIN), }; let mut count = 0; for point in points { rect.add(*point.borrow()); count += 1; } if count != 0 { rect } else { Self::default() } } /// Returns the width of the rectangle. pub fn width(&self) -> f32 { self.max.x - self.min.x } /// Returns the height of the rectangle. pub fn height(&self) -> f32 { self.max.y - self.min.y } /// Extends the rectangle to include the specified point. pub fn add(&mut self, point: Point) { self.min.x = self.min.x.min(point.x); self.min.y = self.min.y.min(point.y); self.max.x = self.max.x.max(point.x); self.max.y = self.max.y.max(point.y); } /// Returns a new rectangle that encloses the minimum and maximum points /// of this rectangle after applying the specified transform to each. pub fn transform(&self, affine: &Affine) -> Self { Self::from_points([self.min.transform(affine), self.max.transform(affine)]) } }