// This is "kernel 4" in a 4-kernel pipeline. It renders the commands // in the per-tile command list to an image. // Right now, this kernel stores the image in a buffer, but a better // plan is to use a texture. This is because of limited support. #version 450 #extension GL_GOOGLE_include_directive : enable #include "setup.h" #define CHUNK 8 #define CHUNK_DY (TILE_HEIGHT_PX / CHUNK) layout(local_size_x = TILE_WIDTH_PX, local_size_y = CHUNK_DY) in; // Same concern that this should be readonly as in kernel 3. layout(set = 0, binding = 0) buffer PtclBuf { uint[] ptcl; }; layout(set = 0, binding = 1) buffer TileBuf { uint[] tile; }; layout(rgba8, set = 0, binding = 2) uniform writeonly image2D image; #include "ptcl.h" #include "tile.h" #define BLEND_STACK_SIZE 4 // Calculate coverage based on backdrop + coverage of each line segment float[CHUNK] computeArea(vec2 xy, int backdrop, uint tile_ref) { // Probably better to store as float, but conversion is no doubt cheap. float area[CHUNK]; for (uint k = 0; k < CHUNK; k++) area[k] = float(backdrop); TileSegRef tile_seg_ref = TileSegRef(tile_ref); do { TileSeg seg = TileSeg_read(tile_seg_ref); for (uint k = 0; k < CHUNK; k++) { vec2 my_xy = vec2(xy.x, xy.y + float(k * CHUNK_DY)); vec2 start = seg.start - my_xy; vec2 end = seg.end - my_xy; vec2 window = clamp(vec2(start.y, end.y), 0.0, 1.0); if (window.x != window.y) { vec2 t = (window - start.y) / (end.y - start.y); vec2 xs = vec2(mix(start.x, end.x, t.x), mix(start.x, end.x, t.y)); float xmin = min(min(xs.x, xs.y), 1.0) - 1e-6; float xmax = max(xs.x, xs.y); float b = min(xmax, 1.0); float c = max(b, 0.0); float d = max(xmin, 0.0); float a = (b + 0.5 * (d * d - c * c) - xmin) / (xmax - xmin); area[k] += a * (window.x - window.y); } area[k] += sign(end.x - start.x) * clamp(my_xy.y - seg.y_edge + 1.0, 0.0, 1.0); } tile_seg_ref = seg.next; } while (tile_seg_ref.offset != 0); for (uint k = 0; k < CHUNK; k++) { area[k] = min(abs(area[k]), 1.0); } return area; } void main() { uint tile_ix = gl_WorkGroupID.y * WIDTH_IN_TILES + gl_WorkGroupID.x; CmdRef cmd_ref = CmdRef(tile_ix * PTCL_INITIAL_ALLOC); uvec2 xy_uint = uvec2(gl_GlobalInvocationID.x, gl_LocalInvocationID.y + TILE_HEIGHT_PX * gl_WorkGroupID.y); vec2 xy = vec2(xy_uint); vec3 rgb[CHUNK]; float mask[CHUNK]; uint blend_stack[BLEND_STACK_SIZE][CHUNK]; uint blend_sp = 0; for (uint i = 0; i < CHUNK; i++) { rgb[i] = vec3(0.5); mask[i] = 1.0; } while (true) { uint tag = Cmd_tag(cmd_ref); if (tag == Cmd_End) { break; } switch (tag) { case Cmd_Circle: CmdCircle circle = Cmd_Circle_read(cmd_ref); vec4 fg_rgba = unpackUnorm4x8(circle.rgba_color).wzyx; for (uint i = 0; i < CHUNK; i++) { float dy = float(i * CHUNK_DY); float r = length(vec2(xy.x, xy.y + dy) + vec2(0.5, 0.5) - circle.center.xy); float alpha = clamp(0.5 + circle.radius - r, 0.0, 1.0); // TODO: sRGB rgb[i] = mix(rgb[i], fg_rgba.rgb, mask[i] * alpha * fg_rgba.a); } break; case Cmd_Stroke: // Calculate distance field from all the line segments in this tile. CmdStroke stroke = Cmd_Stroke_read(cmd_ref); float df[CHUNK]; for (uint k = 0; k < CHUNK; k++) df[k] = 1e9; TileSegRef tile_seg_ref = TileSegRef(stroke.tile_ref); do { TileSeg seg = TileSeg_read(tile_seg_ref); vec2 line_vec = seg.end - seg.start; for (uint k = 0; k < CHUNK; k++) { vec2 dpos = xy + vec2(0.5, 0.5) - seg.start; dpos.y += float(k * CHUNK_DY); float t = clamp(dot(line_vec, dpos) / dot(line_vec, line_vec), 0.0, 1.0); df[k] = min(df[k], length(line_vec * t - dpos)); } tile_seg_ref = seg.next; } while (tile_seg_ref.offset != 0); fg_rgba = unpackUnorm4x8(stroke.rgba_color).wzyx; for (uint k = 0; k < CHUNK; k++) { float alpha = clamp(stroke.half_width + 0.5 - df[k], 0.0, 1.0); rgb[k] = mix(rgb[k], fg_rgba.rgb, mask[k] * alpha * fg_rgba.a); } break; case Cmd_Fill: CmdFill fill = Cmd_Fill_read(cmd_ref); float area[CHUNK]; area = computeArea(xy, fill.backdrop, fill.tile_ref); fg_rgba = unpackUnorm4x8(fill.rgba_color).wzyx; for (uint k = 0; k < CHUNK; k++) { rgb[k] = mix(rgb[k], fg_rgba.rgb, mask[k] * area[k] * fg_rgba.a); } break; case Cmd_FillMask: CmdFillMask fill_mask = Cmd_FillMask_read(cmd_ref); area = computeArea(xy, fill_mask.backdrop, fill_mask.tile_ref); for (uint k = 0; k < CHUNK; k++) { mask[k] = mix(mask[k], fill_mask.mask, area[k]); } break; case Cmd_FillMaskInv: fill_mask = Cmd_FillMask_read(cmd_ref); area = computeArea(xy, fill_mask.backdrop, fill_mask.tile_ref); for (uint k = 0; k < CHUNK; k++) { mask[k] = mix(mask[k], fill_mask.mask, 1.0 - area[k]); } break; case Cmd_BeginClip: CmdBeginClip begin_clip = Cmd_BeginClip_read(cmd_ref); area = computeArea(xy, begin_clip.backdrop, begin_clip.tile_ref); for (uint k = 0; k < CHUNK; k++) { blend_stack[blend_sp][k] = packUnorm4x8(vec4(rgb[k], clamp(abs(area[k]), 0.0, 1.0))); } blend_sp++; break; case Cmd_BeginSolidClip: CmdBeginSolidClip begin_solid_clip = Cmd_BeginSolidClip_read(cmd_ref); float solid_alpha = begin_solid_clip.alpha; for (uint k = 0; k < CHUNK; k++) { blend_stack[blend_sp][k] = packUnorm4x8(vec4(rgb[k], solid_alpha)); } blend_sp++; break; case Cmd_EndClip: CmdEndClip end_clip = Cmd_EndClip_read(cmd_ref); blend_sp--; for (uint k = 0; k < CHUNK; k++) { vec4 rgba = unpackUnorm4x8(blend_stack[blend_sp][k]); rgb[k] = mix(rgba.rgb, rgb[k], end_clip.alpha * rgba.a); } break; case Cmd_Solid: CmdSolid solid = Cmd_Solid_read(cmd_ref); fg_rgba = unpackUnorm4x8(solid.rgba_color).wzyx; for (uint k = 0; k < CHUNK; k++) { rgb[k] = mix(rgb[k], fg_rgba.rgb, mask[k] * fg_rgba.a); } break; case Cmd_SolidMask: CmdSolidMask solid_mask = Cmd_SolidMask_read(cmd_ref); for (uint k = 0; k < CHUNK; k++) { mask[k] = solid_mask.mask; } break; case Cmd_Jump: cmd_ref = CmdRef(Cmd_Jump_read(cmd_ref).new_ref); continue; } cmd_ref.offset += Cmd_size; } // TODO: sRGB for (uint i = 0; i < CHUNK; i++) { imageStore(image, ivec2(xy_uint.x, xy_uint.y + CHUNK_DY * i), vec4(rgb[i], 1.0)); } }