// SPDX-License-Identifier: Apache-2.0 OR MIT OR Unlicense // Path coarse rasterization for the full implementation. #import config #import pathtag #import tile #import segment #import cubic #import bump @group(0) @binding(0) var config: Config; @group(0) @binding(1) var scene: array; @group(0) @binding(2) var tag_monoids: array; @group(0) @binding(3) var cubics: array; @group(0) @binding(4) var paths: array; // We don't get this from import as it's the atomic version struct AtomicTile { backdrop: atomic, segments: atomic, } @group(0) @binding(5) var bump: BumpAllocators; @group(0) @binding(6) var tiles: array; @group(0) @binding(7) var segments: array; struct SubdivResult { val: f32, a0: f32, a2: f32, } let D = 0.67; fn approx_parabola_integral(x: f32) -> f32 { return x * inverseSqrt(sqrt(1.0 - D + (D * D * D * D + 0.25 * x * x))); } let B = 0.39; fn approx_parabola_inv_integral(x: f32) -> f32 { return x * sqrt(1.0 - B + (B * B + 0.5 * x * x)); } fn estimate_subdiv(p0: vec2, p1: vec2, p2: vec2, sqrt_tol: f32) -> SubdivResult { let d01 = p1 - p0; let d12 = p2 - p1; let dd = d01 - d12; let cross = (p2.x - p0.x) * dd.y - (p2.y - p0.y) * dd.x; let cross_inv = select(1.0 / cross, 1.0e9, abs(cross) < 1.0e-9); let x0 = dot(d01, dd) * cross_inv; let x2 = dot(d12, dd) * cross_inv; let scale = abs(cross / (length(dd) * (x2 - x0))); let a0 = approx_parabola_integral(x0); let a2 = approx_parabola_integral(x2); var val = 0.0; if scale < 1e9 { let da = abs(a2 - a0); let sqrt_scale = sqrt(scale); if sign(x0) == sign(x2) { val = sqrt_scale; } else { let xmin = sqrt_tol / sqrt_scale; val = sqrt_tol / approx_parabola_integral(xmin); } val *= da; } return SubdivResult(val, a0, a2); } fn eval_quad(p0: vec2, p1: vec2, p2: vec2, t: f32) -> vec2 { let mt = 1.0 - t; return p0 * (mt * mt) + (p1 * (mt * 2.0) + p2 * t) * t; } fn eval_cubic(p0: vec2, p1: vec2, p2: vec2, p3: vec2, t: f32) -> vec2 { let mt = 1.0 - t; return p0 * (mt * mt * mt) + (p1 * (mt * mt * 3.0) + (p2 * (mt * 3.0) + p3 * t) * t) * t; } fn alloc_segment() -> u32 { var offset = atomicAdd(&bump.segments, 1u) + 1u; if offset + 1u > config.segments_size { offset = 0u; atomicOr(&bump.failed, STAGE_PATH_COARSE); } return offset; } let MAX_QUADS = 16u; @compute @workgroup_size(256) fn main( @builtin(global_invocation_id) global_id: vec3, ) { // Exit early if prior stages failed, as we can't run this stage. // We need to check only prior stages, as if this stage has failed in another workgroup, // we still want to know this workgroup's memory requirement. if (atomicLoad(&bump.failed) & (STAGE_BINNING | STAGE_TILE_ALLOC)) != 0u { return; } let ix = global_id.x; let tag_word = scene[config.pathtag_base + (ix >> 2u)]; let shift = (ix & 3u) * 8u; var tag_byte = (tag_word >> shift) & 0xffu; if (tag_byte & PATH_TAG_SEG_TYPE) != 0u { // Discussion question: it might actually be cheaper to do the path segment // decoding & transform again rather than store the result in a buffer; // classic memory vs ALU tradeoff. let cubic = cubics[global_id.x]; let path = paths[cubic.path_ix]; let is_stroke = (cubic.flags & CUBIC_IS_STROKE) != 0u; let bbox = vec4(path.bbox); let p0 = cubic.p0; let p1 = cubic.p1; let p2 = cubic.p2; let p3 = cubic.p3; let err_v = 3.0 * (p2 - p1) + p0 - p3; let err = dot(err_v, err_v); let ACCURACY = 0.25; let Q_ACCURACY = ACCURACY * 0.1; let REM_ACCURACY = (ACCURACY - Q_ACCURACY); let MAX_HYPOT2 = 432.0 * Q_ACCURACY * Q_ACCURACY; var n_quads = max(u32(ceil(pow(err * (1.0 / MAX_HYPOT2), 1.0 / 6.0))), 1u); n_quads = min(n_quads, MAX_QUADS); var keep_params: array; var val = 0.0; var qp0 = p0; let step = 1.0 / f32(n_quads); for (var i = 0u; i < n_quads; i += 1u) { let t = f32(i + 1u) * step; let qp2 = eval_cubic(p0, p1, p2, p3, t); var qp1 = eval_cubic(p0, p1, p2, p3, t - 0.5 * step); qp1 = 2.0 * qp1 - 0.5 * (qp0 + qp2); let params = estimate_subdiv(qp0, qp1, qp2, sqrt(REM_ACCURACY)); keep_params[i] = params; val += params.val; qp0 = qp2; } let n = max(u32(ceil(val * (0.5 / sqrt(REM_ACCURACY)))), 1u); var lp0 = p0; qp0 = p0; let v_step = val / f32(n); var n_out = 1u; var val_sum = 0.0; for (var i = 0u; i < n_quads; i += 1u) { let t = f32(i + 1u) * step; let qp2 = eval_cubic(p0, p1, p2, p3, t); var qp1 = eval_cubic(p0, p1, p2, p3, t - 0.5 * step); qp1 = 2.0 * qp1 - 0.5 * (qp0 + qp2); let params = keep_params[i]; let u0 = approx_parabola_inv_integral(params.a0); let u2 = approx_parabola_inv_integral(params.a2); let uscale = 1.0 / (u2 - u0); var val_target = f32(n_out) * v_step; while n_out == n || val_target < val_sum + params.val { var lp1: vec2; if n_out == n { lp1 = p3; } else { let u = (val_target - val_sum) / params.val; let a = mix(params.a0, params.a2, u); let au = approx_parabola_inv_integral(a); let t = (au - u0) * uscale; lp1 = eval_quad(qp0, qp1, qp2, t); } // Output line segment lp0..lp1 let xymin = min(lp0, lp1) - cubic.stroke; let xymax = max(lp0, lp1) + cubic.stroke; let dp = lp1 - lp0; let recip_dx = 1.0 / dp.x; let invslope = select(dp.x / dp.y, 1.0e9, abs(dp.y) < 1.0e-9); let SX = 1.0 / f32(TILE_WIDTH); let SY = 1.0 / f32(TILE_HEIGHT); let c = (cubic.stroke.x + abs(invslope) * (0.5 * f32(TILE_HEIGHT) + cubic.stroke.y)) * SX; let b = invslope; let a = (lp0.x - (lp0.y - 0.5 * f32(TILE_HEIGHT)) * b) * SX; var x0 = i32(floor(xymin.x * SX)); var x1 = i32(floor(xymax.x * SX) + 1.0); var y0 = i32(floor(xymin.y * SY)); var y1 = i32(floor(xymax.y * SY) + 1.0); x0 = clamp(x0, bbox.x, bbox.z); x1 = clamp(x1, bbox.x, bbox.z); y0 = clamp(y0, bbox.y, bbox.w); y1 = clamp(y1, bbox.y, bbox.w); var xc = a + b * f32(y0); let stride = bbox.z - bbox.x; var base = i32(path.tiles) + (y0 - bbox.y) * stride - bbox.x; var xray = i32(floor(lp0.x * SX)); var last_xray = i32(floor(lp1.x * SX)); if dp.y < 0.0 { let tmp = xray; xray = last_xray; last_xray = tmp; } for (var y = y0; y < y1; y += 1) { let tile_y0 = f32(y) * f32(TILE_HEIGHT); let xbackdrop = max(xray + 1, bbox.x); if !is_stroke && xymin.y < tile_y0 && xbackdrop < bbox.z { let backdrop = select(-1, 1, dp.y < 0.0); let tile_ix = base + xbackdrop; atomicAdd(&tiles[tile_ix].backdrop, backdrop); } var next_xray = last_xray; if y + 1 < y1 { let tile_y1 = f32(y + 1) * f32(TILE_HEIGHT); let x_edge = lp0.x + (tile_y1 - lp0.y) * invslope; next_xray = i32(floor(x_edge * SX)); } let min_xray = min(xray, next_xray); let max_xray = max(xray, next_xray); var xx0 = min(i32(floor(xc - c)), min_xray); var xx1 = max(i32(ceil(xc + c)), max_xray + 1); xx0 = clamp(xx0, x0, x1); xx1 = clamp(xx1, x0, x1); var tile_seg: Segment; for (var x = xx0; x < xx1; x += 1) { let tile_x0 = f32(x) * f32(TILE_WIDTH); let tile_ix = base + x; // allocate segment, insert linked list let seg_ix = alloc_segment(); let old = atomicExchange(&tiles[tile_ix].segments, seg_ix); tile_seg.origin = lp0; tile_seg.delta = dp; var y_edge = 0.0; if !is_stroke { y_edge = mix(lp0.y, lp1.y, (tile_x0 - lp0.x) * recip_dx); if xymin.x < tile_x0 { let p = vec2(tile_x0, y_edge); if dp.x < 0.0 { tile_seg.delta = p - lp0; } else { tile_seg.origin = p; tile_seg.delta = lp1 - p; } if tile_seg.delta.x == 0.0 { tile_seg.delta.x = sign(dp.x) * 1e-9; } } if x <= min_xray || max_xray < x { y_edge = 1e9; } } tile_seg.y_edge = y_edge; tile_seg.next = old; segments[seg_ix] = tile_seg; } xc += b; base += stride; xray = next_xray; } n_out += 1u; val_target += v_step; lp0 = lp1; } val_sum += params.val; qp0 = qp2; } } }