// SPDX-License-Identifier: Apache-2.0 OR MIT OR Unlicense // This is "kernel 4" in a 4-kernel pipeline. It renders the commands // in the per-tile command list to an image. // Right now, this kernel stores the image in a buffer, but a better // plan is to use a texture. This is because of limited support. #version 450 #extension GL_GOOGLE_include_directive : enable #extension GL_EXT_nonuniform_qualifier : enable #include "mem.h" #include "setup.h" #define CHUNK_X 2 #define CHUNK_Y 4 #define CHUNK CHUNK_X * CHUNK_Y #define CHUNK_DX (TILE_WIDTH_PX / CHUNK_X) #define CHUNK_DY (TILE_HEIGHT_PX / CHUNK_Y) layout(local_size_x = CHUNK_DX, local_size_y = CHUNK_DY) in; layout(set = 0, binding = 1) readonly buffer ConfigBuf { Config conf; }; layout(rgba8, set = 0, binding = 2) uniform writeonly image2D image; #if GL_EXT_nonuniform_qualifier layout(rgba8, set = 0, binding = 3) uniform readonly image2D images[]; #else layout(rgba8, set = 0, binding = 3) uniform readonly image2D images[1]; #endif #include "ptcl.h" #include "tile.h" vec3 tosRGB(vec3 rgb) { bvec3 cutoff = greaterThanEqual(rgb, vec3(0.0031308)); vec3 below = vec3(12.92)*rgb; vec3 above = vec3(1.055)*pow(rgb, vec3(0.41666)) - vec3(0.055); return mix(below, above, cutoff); } vec3 fromsRGB(vec3 srgb) { // Formula from EXT_sRGB. bvec3 cutoff = greaterThanEqual(srgb, vec3(0.04045)); vec3 below = srgb/vec3(12.92); vec3 above = pow((srgb + vec3(0.055))/vec3(1.055), vec3(2.4)); return mix(below, above, cutoff); } // unpacksRGB unpacks a color in the sRGB color space to a vec4 in the linear color // space. vec4 unpacksRGB(uint srgba) { vec4 color = unpackUnorm4x8(srgba).wzyx; return vec4(fromsRGB(color.rgb), color.a); } // packsRGB packs a color in the linear color space into its 8-bit sRGB equivalent. uint packsRGB(vec4 rgba) { rgba = vec4(tosRGB(rgba.rgb), rgba.a); return packUnorm4x8(rgba.wzyx); } uvec2 chunk_offset(uint i) { return uvec2(i % CHUNK_X * CHUNK_DX, i / CHUNK_X * CHUNK_DY); } vec4[CHUNK] fillImage(uvec2 xy, CmdImage cmd_img) { vec4 rgba[CHUNK]; for (uint i = 0; i < CHUNK; i++) { ivec2 uv = ivec2(xy + chunk_offset(i)) + cmd_img.offset; #ifdef ENABLE_IMAGE_INDICES vec4 fg_rgba = imageLoad(images[cmd_img.index], uv); #else vec4 fg_rgba = imageLoad(images[0], uv); #endif fg_rgba.rgb = fromsRGB(fg_rgba.rgb); rgba[i] = fg_rgba; } return rgba; } void main() { if (mem_error != NO_ERROR) { return; } uint tile_ix = gl_WorkGroupID.y * conf.width_in_tiles + gl_WorkGroupID.x; Alloc cmd_alloc = slice_mem(conf.ptcl_alloc, tile_ix * PTCL_INITIAL_ALLOC, PTCL_INITIAL_ALLOC); CmdRef cmd_ref = CmdRef(cmd_alloc.offset); // Read scrach space allocation, written first in the command list. Alloc scratch_alloc = alloc_read(cmd_alloc, cmd_ref.offset); cmd_ref.offset += Alloc_size; uvec2 xy_uint = uvec2(gl_LocalInvocationID.x + TILE_WIDTH_PX * gl_WorkGroupID.x, gl_LocalInvocationID.y + TILE_HEIGHT_PX * gl_WorkGroupID.y); vec2 xy = vec2(xy_uint); vec4 rgba[CHUNK]; for (uint i = 0; i < CHUNK; i++) { rgba[i] = vec4(0.0); #ifdef ENABLE_IMAGE_INDICES if (xy_uint.x < 1024 && xy_uint.y < 1024) { rgba[i] = imageLoad(images[gl_WorkGroupID.x / 64], ivec2(xy_uint + chunk_offset(i))/4); } #endif } float area[CHUNK]; uint clip_depth = 0; while (true) { uint tag = Cmd_tag(cmd_alloc, cmd_ref).tag; if (tag == Cmd_End) { break; } switch (tag) { case Cmd_Stroke: // Calculate distance field from all the line segments in this tile. CmdStroke stroke = Cmd_Stroke_read(cmd_alloc, cmd_ref); float df[CHUNK]; for (uint k = 0; k < CHUNK; k++) df[k] = 1e9; TileSegRef tile_seg_ref = TileSegRef(stroke.tile_ref); do { TileSeg seg = TileSeg_read(new_alloc(tile_seg_ref.offset, TileSeg_size), tile_seg_ref); vec2 line_vec = seg.vector; for (uint k = 0; k < CHUNK; k++) { vec2 dpos = xy + vec2(0.5, 0.5) - seg.origin; dpos += vec2(chunk_offset(k)); float t = clamp(dot(line_vec, dpos) / dot(line_vec, line_vec), 0.0, 1.0); df[k] = min(df[k], length(line_vec * t - dpos)); } tile_seg_ref = seg.next; } while (tile_seg_ref.offset != 0); for (uint k = 0; k < CHUNK; k++) { area[k] = clamp(stroke.half_width + 0.5 - df[k], 0.0, 1.0); } cmd_ref.offset += 4 + CmdStroke_size; break; case Cmd_Fill: CmdFill fill = Cmd_Fill_read(cmd_alloc, cmd_ref); for (uint k = 0; k < CHUNK; k++) area[k] = float(fill.backdrop); tile_seg_ref = TileSegRef(fill.tile_ref); // Calculate coverage based on backdrop + coverage of each line segment do { TileSeg seg = TileSeg_read(new_alloc(tile_seg_ref.offset, TileSeg_size), tile_seg_ref); for (uint k = 0; k < CHUNK; k++) { vec2 my_xy = xy + vec2(chunk_offset(k)); vec2 start = seg.origin - my_xy; vec2 end = start + seg.vector; vec2 window = clamp(vec2(start.y, end.y), 0.0, 1.0); if (window.x != window.y) { vec2 t = (window - start.y) / seg.vector.y; vec2 xs = vec2(mix(start.x, end.x, t.x), mix(start.x, end.x, t.y)); float xmin = min(min(xs.x, xs.y), 1.0) - 1e-6; float xmax = max(xs.x, xs.y); float b = min(xmax, 1.0); float c = max(b, 0.0); float d = max(xmin, 0.0); float a = (b + 0.5 * (d * d - c * c) - xmin) / (xmax - xmin); area[k] += a * (window.x - window.y); } area[k] += sign(seg.vector.x) * clamp(my_xy.y - seg.y_edge + 1.0, 0.0, 1.0); } tile_seg_ref = seg.next; } while (tile_seg_ref.offset != 0); for (uint k = 0; k < CHUNK; k++) { area[k] = min(abs(area[k]), 1.0); } cmd_ref.offset += 4 + CmdFill_size; break; case Cmd_Solid: for (uint k = 0; k < CHUNK; k++) { area[k] = 1.0; } cmd_ref.offset += 4; break; case Cmd_Alpha: CmdAlpha alpha = Cmd_Alpha_read(cmd_alloc, cmd_ref); for (uint k = 0; k < CHUNK; k++) { area[k] = alpha.alpha; } cmd_ref.offset += 4 + CmdAlpha_size; break; case Cmd_Color: CmdColor color = Cmd_Color_read(cmd_alloc, cmd_ref); vec4 fg = unpacksRGB(color.rgba_color); for (uint k = 0; k < CHUNK; k++) { vec4 fg_k = fg * area[k]; rgba[k] = rgba[k] * (1.0 - fg_k.a) + fg_k; } cmd_ref.offset += 4 + CmdColor_size; break; case Cmd_Image: CmdImage fill_img = Cmd_Image_read(cmd_alloc, cmd_ref); vec4 img[CHUNK] = fillImage(xy_uint, fill_img); for (uint k = 0; k < CHUNK; k++) { vec4 fg_k = img[k] * area[k]; rgba[k] = rgba[k] * (1.0 - fg_k.a) + fg_k; } cmd_ref.offset += 4 + CmdImage_size; break; case Cmd_BeginClip: uint base_ix = (scratch_alloc.offset >> 2) + CLIP_STATE_SIZE * (clip_depth * TILE_WIDTH_PX * TILE_HEIGHT_PX + gl_LocalInvocationID.x + TILE_WIDTH_PX * gl_LocalInvocationID.y); for (uint k = 0; k < CHUNK; k++) { uvec2 offset = chunk_offset(k); uint srgb = packsRGB(vec4(rgba[k])); float alpha = clamp(abs(area[k]), 0.0, 1.0); write_mem(scratch_alloc, base_ix + 0 + CLIP_STATE_SIZE * (offset.x + offset.y * TILE_WIDTH_PX), srgb); write_mem(scratch_alloc, base_ix + 1 + CLIP_STATE_SIZE * (offset.x + offset.y * TILE_WIDTH_PX), floatBitsToUint(alpha)); rgba[k] = vec4(0.0); } clip_depth++; cmd_ref.offset += 4; break; case Cmd_EndClip: clip_depth--; base_ix = (scratch_alloc.offset >> 2) + CLIP_STATE_SIZE * (clip_depth * TILE_WIDTH_PX * TILE_HEIGHT_PX + gl_LocalInvocationID.x + TILE_WIDTH_PX * gl_LocalInvocationID.y); for (uint k = 0; k < CHUNK; k++) { uvec2 offset = chunk_offset(k); uint srgb = read_mem(scratch_alloc, base_ix + 0 + CLIP_STATE_SIZE * (offset.x + offset.y * TILE_WIDTH_PX)); uint alpha = read_mem(scratch_alloc, base_ix + 1 + CLIP_STATE_SIZE * (offset.x + offset.y * TILE_WIDTH_PX)); vec4 bg = unpacksRGB(srgb); vec4 fg = rgba[k] * area[k] * uintBitsToFloat(alpha); rgba[k] = bg * (1.0 - fg.a) + fg; } cmd_ref.offset += 4; break; case Cmd_Jump: cmd_ref = CmdRef(Cmd_Jump_read(cmd_alloc, cmd_ref).new_ref); cmd_alloc.offset = cmd_ref.offset; continue; } } for (uint i = 0; i < CHUNK; i++) { imageStore(image, ivec2(xy_uint + chunk_offset(i)), vec4(tosRGB(rgba[i].rgb), rgba[i].a)); } }