vello/piet-gpu/shader/coarse.comp
Elias Naur d9d518b248 avoid non-uniform barrier control flow when exhausting memory
The compute shaders have a check for the succesful completion of their
preceding stage. However, consider a shader execution path like the
following:

	void main()
		if (mem_error != NO_ERROR) {
		    return;
		}
		...
		malloc(...);
		...
		barrier();
		...
	}

and  shader execution that fails to allocate memory, thereby setting
mem_error to ERR_MALLOC_FAILED in malloc before reaching the barrier. If
another shader execution then begins execution, its mem_eror check will
make it return early and not reach the barrier.

All GPU APIs require (dynamically) uniform control flow for barriers,
and the above case may lead to GPU hangs in practice.

Fix this issue by replacing the early exits with careful checks that
don't interrupt barrier control flow.

Unfortunately, it's harder to prove the soundness of the new checks, so
this change also clears dynamic memory ranges in MEM_DEBUG mode when
memory is exhausted. The result is that accessing memory after
exhaustion triggers an error.

Signed-off-by: Elias Naur <mail@eliasnaur.com>
2021-04-20 10:15:29 +02:00

427 lines
18 KiB
GLSL

// SPDX-License-Identifier: Apache-2.0 OR MIT OR Unlicense
// The coarse rasterizer stage of the pipeline.
//
// As input we have the ordered partitions of paths from the binning phase and
// the annotated tile list of segments and backdrop per path.
//
// Each workgroup operating on one bin by stream compacting
// the elements corresponding to the bin.
//
// As output we have an ordered command stream per tile. Every tile from a path (backdrop + segment list) will be encoded.
#version 450
#extension GL_GOOGLE_include_directive : enable
#include "mem.h"
#include "setup.h"
layout(local_size_x = N_TILE, local_size_y = 1) in;
layout(set = 0, binding = 1) readonly buffer ConfigBuf {
Config conf;
};
#include "annotated.h"
#include "bins.h"
#include "tile.h"
#include "ptcl.h"
#define LG_N_PART_READ (7 + LG_WG_FACTOR)
#define N_PART_READ (1 << LG_N_PART_READ)
shared uint sh_elements[N_TILE];
// Number of elements in the partition; prefix sum.
shared uint sh_part_count[N_PART_READ];
shared Alloc sh_part_elements[N_PART_READ];
shared uint sh_bitmaps[N_SLICE][N_TILE];
shared uint sh_tile_count[N_TILE];
// The width of the tile rect for the element, intersected with this bin
shared uint sh_tile_width[N_TILE];
shared uint sh_tile_x0[N_TILE];
shared uint sh_tile_y0[N_TILE];
// These are set up so base + tile_y * stride + tile_x points to a Tile.
shared uint sh_tile_base[N_TILE];
shared uint sh_tile_stride[N_TILE];
#ifdef MEM_DEBUG
// Store allocs only when MEM_DEBUG to save shared memory traffic.
shared Alloc sh_tile_alloc[N_TILE];
void write_tile_alloc(uint el_ix, Alloc a) {
sh_tile_alloc[el_ix] = a;
}
Alloc read_tile_alloc(uint el_ix, bool mem_ok) {
return sh_tile_alloc[el_ix];
}
#else
void write_tile_alloc(uint el_ix, Alloc a) {
// No-op
}
Alloc read_tile_alloc(uint el_ix, bool mem_ok) {
// All memory.
return new_alloc(0, memory.length()*4, mem_ok);
}
#endif
// The maximum number of commands per annotated element.
#define ANNO_COMMANDS 2
// Perhaps cmd_alloc should be a global? This is a style question.
bool alloc_cmd(inout Alloc cmd_alloc, inout CmdRef cmd_ref, inout uint cmd_limit) {
if (cmd_ref.offset < cmd_limit) {
return true;
}
MallocResult new_cmd = malloc(PTCL_INITIAL_ALLOC);
if (new_cmd.failed) {
return false;
}
CmdJump jump = CmdJump(new_cmd.alloc.offset);
Cmd_Jump_write(cmd_alloc, cmd_ref, jump);
cmd_alloc = new_cmd.alloc;
cmd_ref = CmdRef(cmd_alloc.offset);
// Reserve space for the maximum number of commands and a potential jump.
cmd_limit = cmd_alloc.offset + PTCL_INITIAL_ALLOC - (ANNO_COMMANDS + 1) * Cmd_size;
return true;
}
void write_fill(Alloc alloc, inout CmdRef cmd_ref, uint flags, Tile tile, float linewidth) {
if (fill_mode_from_flags(flags) == MODE_NONZERO) {
if (tile.tile.offset != 0) {
CmdFill cmd_fill = CmdFill(tile.tile.offset, tile.backdrop);
Cmd_Fill_write(alloc, cmd_ref, cmd_fill);
cmd_ref.offset += 4 + CmdFill_size;
} else {
Cmd_Solid_write(alloc, cmd_ref);
cmd_ref.offset += 4;
}
} else {
CmdStroke cmd_stroke = CmdStroke(tile.tile.offset, 0.5 * linewidth);
Cmd_Stroke_write(alloc, cmd_ref, cmd_stroke);
cmd_ref.offset += 4 + CmdStroke_size;
}
}
void main() {
// Could use either linear or 2d layouts for both dispatch and
// invocations within the workgroup. We'll use variables to abstract.
uint width_in_bins = (conf.width_in_tiles + N_TILE_X - 1)/N_TILE_X;
uint bin_ix = width_in_bins * gl_WorkGroupID.y + gl_WorkGroupID.x;
uint partition_ix = 0;
uint n_partitions = (conf.n_elements + N_TILE - 1) / N_TILE;
uint th_ix = gl_LocalInvocationID.x;
// Coordinates of top left of bin, in tiles.
uint bin_tile_x = N_TILE_X * gl_WorkGroupID.x;
uint bin_tile_y = N_TILE_Y * gl_WorkGroupID.y;
// Per-tile state
uint tile_x = gl_LocalInvocationID.x % N_TILE_X;
uint tile_y = gl_LocalInvocationID.x / N_TILE_X;
uint this_tile_ix = (bin_tile_y + tile_y) * conf.width_in_tiles + bin_tile_x + tile_x;
Alloc cmd_alloc = slice_mem(conf.ptcl_alloc, this_tile_ix * PTCL_INITIAL_ALLOC, PTCL_INITIAL_ALLOC);
CmdRef cmd_ref = CmdRef(cmd_alloc.offset);
// Reserve space for the maximum number of commands and a potential jump.
uint cmd_limit = cmd_ref.offset + PTCL_INITIAL_ALLOC - (ANNO_COMMANDS + 1) * Cmd_size;
// The nesting depth of the clip stack
uint clip_depth = 0;
// State for the "clip zero" optimization. If it's nonzero, then we are
// currently in a clip for which the entire tile has an alpha of zero, and
// the value is the depth after the "begin clip" of that element.
uint clip_zero_depth = 0;
// State for the "clip one" optimization. If bit `i` is set, then that means
// that the clip pushed at depth `i` has an alpha of all one.
uint clip_one_mask = 0;
// I'm sure we can figure out how to do this with at least one fewer register...
// Items up to rd_ix have been read from sh_elements
uint rd_ix = 0;
// Items up to wr_ix have been written into sh_elements
uint wr_ix = 0;
// Items between part_start_ix and ready_ix are ready to be transferred from sh_part_elements
uint part_start_ix = 0;
uint ready_ix = 0;
// Leave room for the fine rasterizer scratch allocation.
Alloc scratch_alloc = slice_mem(cmd_alloc, 0, Alloc_size);
cmd_ref.offset += Alloc_size;
uint num_begin_slots = 0;
uint begin_slot = 0;
bool mem_ok = mem_error == NO_ERROR;
while (true) {
for (uint i = 0; i < N_SLICE; i++) {
sh_bitmaps[i][th_ix] = 0;
}
// parallel read of input partitions
do {
if (ready_ix == wr_ix && partition_ix < n_partitions) {
part_start_ix = ready_ix;
uint count = 0;
if (th_ix < N_PART_READ && partition_ix + th_ix < n_partitions) {
uint in_ix = (conf.bin_alloc.offset >> 2) + ((partition_ix + th_ix) * N_TILE + bin_ix) * 2;
count = read_mem(conf.bin_alloc, in_ix);
uint offset = read_mem(conf.bin_alloc, in_ix + 1);
sh_part_elements[th_ix] = new_alloc(offset, count*BinInstance_size, mem_ok);
}
// prefix sum of counts
for (uint i = 0; i < LG_N_PART_READ; i++) {
if (th_ix < N_PART_READ) {
sh_part_count[th_ix] = count;
}
barrier();
if (th_ix < N_PART_READ) {
if (th_ix >= (1 << i)) {
count += sh_part_count[th_ix - (1 << i)];
}
}
barrier();
}
if (th_ix < N_PART_READ) {
sh_part_count[th_ix] = part_start_ix + count;
}
barrier();
ready_ix = sh_part_count[N_PART_READ - 1];
partition_ix += N_PART_READ;
}
// use binary search to find element to read
uint ix = rd_ix + th_ix;
if (ix >= wr_ix && ix < ready_ix && mem_ok) {
uint part_ix = 0;
for (uint i = 0; i < LG_N_PART_READ; i++) {
uint probe = part_ix + ((N_PART_READ / 2) >> i);
if (ix >= sh_part_count[probe - 1]) {
part_ix = probe;
}
}
ix -= part_ix > 0 ? sh_part_count[part_ix - 1] : part_start_ix;
Alloc bin_alloc = sh_part_elements[part_ix];
BinInstanceRef inst_ref = BinInstanceRef(bin_alloc.offset);
BinInstance inst = BinInstance_read(bin_alloc, BinInstance_index(inst_ref, ix));
sh_elements[th_ix] = inst.element_ix;
}
barrier();
wr_ix = min(rd_ix + N_TILE, ready_ix);
} while (wr_ix - rd_ix < N_TILE && (wr_ix < ready_ix || partition_ix < n_partitions));
// We've done the merge and filled the buffer.
// Read one element, compute coverage.
uint tag = Annotated_Nop;
uint element_ix;
AnnotatedRef ref;
if (th_ix + rd_ix < wr_ix) {
element_ix = sh_elements[th_ix];
ref = AnnotatedRef(conf.anno_alloc.offset + element_ix * Annotated_size);
tag = Annotated_tag(conf.anno_alloc, ref).tag;
}
// Bounding box of element in pixel coordinates.
uint tile_count;
switch (tag) {
case Annotated_Color:
case Annotated_Image:
case Annotated_BeginClip:
case Annotated_EndClip:
// We have one "path" for each element, even if the element isn't
// actually a path (currently EndClip, but images etc in the future).
uint path_ix = element_ix;
Path path = Path_read(conf.tile_alloc, PathRef(conf.tile_alloc.offset + path_ix * Path_size));
uint stride = path.bbox.z - path.bbox.x;
sh_tile_stride[th_ix] = stride;
int dx = int(path.bbox.x) - int(bin_tile_x);
int dy = int(path.bbox.y) - int(bin_tile_y);
int x0 = clamp(dx, 0, N_TILE_X);
int y0 = clamp(dy, 0, N_TILE_Y);
int x1 = clamp(int(path.bbox.z) - int(bin_tile_x), 0, N_TILE_X);
int y1 = clamp(int(path.bbox.w) - int(bin_tile_y), 0, N_TILE_Y);
sh_tile_width[th_ix] = uint(x1 - x0);
sh_tile_x0[th_ix] = x0;
sh_tile_y0[th_ix] = y0;
tile_count = uint(x1 - x0) * uint(y1 - y0);
// base relative to bin
uint base = path.tiles.offset - uint(dy * stride + dx) * Tile_size;
sh_tile_base[th_ix] = base;
Alloc path_alloc = new_alloc(path.tiles.offset, (path.bbox.z - path.bbox.x) * (path.bbox.w - path.bbox.y) * Tile_size, mem_ok);
write_tile_alloc(th_ix, path_alloc);
break;
default:
tile_count = 0;
break;
}
// Prefix sum of sh_tile_count
sh_tile_count[th_ix] = tile_count;
for (uint i = 0; i < LG_N_TILE; i++) {
barrier();
if (th_ix >= (1 << i)) {
tile_count += sh_tile_count[th_ix - (1 << i)];
}
barrier();
sh_tile_count[th_ix] = tile_count;
}
barrier();
uint total_tile_count = sh_tile_count[N_TILE - 1];
for (uint ix = th_ix; ix < total_tile_count; ix += N_TILE) {
// Binary search to find element
uint el_ix = 0;
for (uint i = 0; i < LG_N_TILE; i++) {
uint probe = el_ix + ((N_TILE / 2) >> i);
if (ix >= sh_tile_count[probe - 1]) {
el_ix = probe;
}
}
AnnotatedRef ref = AnnotatedRef(conf.anno_alloc.offset + sh_elements[el_ix] * Annotated_size);
uint tag = Annotated_tag(conf.anno_alloc, ref).tag;
uint seq_ix = ix - (el_ix > 0 ? sh_tile_count[el_ix - 1] : 0);
uint width = sh_tile_width[el_ix];
uint x = sh_tile_x0[el_ix] + seq_ix % width;
uint y = sh_tile_y0[el_ix] + seq_ix / width;
bool include_tile = false;
if (tag == Annotated_BeginClip || tag == Annotated_EndClip) {
include_tile = true;
} else if (mem_ok) {
Tile tile = Tile_read(read_tile_alloc(el_ix, mem_ok), TileRef(sh_tile_base[el_ix] + (sh_tile_stride[el_ix] * y + x) * Tile_size));
// Include the path in the tile if
// - the tile contains at least a segment (tile offset non-zero)
// - the tile is completely covered (backdrop non-zero)
include_tile = tile.tile.offset != 0 || tile.backdrop != 0;
}
if (include_tile) {
uint el_slice = el_ix / 32;
uint el_mask = 1 << (el_ix & 31);
atomicOr(sh_bitmaps[el_slice][y * N_TILE_X + x], el_mask);
}
}
barrier();
// Output non-segment elements for this tile. The thread does a sequential walk
// through the non-segment elements.
uint slice_ix = 0;
uint bitmap = sh_bitmaps[0][th_ix];
while (mem_ok) {
if (bitmap == 0) {
slice_ix++;
if (slice_ix == N_SLICE) {
break;
}
bitmap = sh_bitmaps[slice_ix][th_ix];
if (bitmap == 0) {
continue;
}
}
uint element_ref_ix = slice_ix * 32 + findLSB(bitmap);
uint element_ix = sh_elements[element_ref_ix];
// Clear LSB
bitmap &= bitmap - 1;
// At this point, we read the element again from global memory.
// If that turns out to be expensive, maybe we can pack it into
// shared memory (or perhaps just the tag).
ref = AnnotatedRef(conf.anno_alloc.offset + element_ix * Annotated_size);
AnnotatedTag tag = Annotated_tag(conf.anno_alloc, ref);
if (clip_zero_depth == 0) {
switch (tag.tag) {
case Annotated_Color:
Tile tile = Tile_read(read_tile_alloc(element_ref_ix, mem_ok), TileRef(sh_tile_base[element_ref_ix]
+ (sh_tile_stride[element_ref_ix] * tile_y + tile_x) * Tile_size));
AnnoColor fill = Annotated_Color_read(conf.anno_alloc, ref);
if (!alloc_cmd(cmd_alloc, cmd_ref, cmd_limit)) {
break;
}
write_fill(cmd_alloc, cmd_ref, tag.flags, tile, fill.linewidth);
Cmd_Color_write(cmd_alloc, cmd_ref, CmdColor(fill.rgba_color));
cmd_ref.offset += 4 + CmdColor_size;
break;
case Annotated_Image:
tile = Tile_read(read_tile_alloc(element_ref_ix, mem_ok), TileRef(sh_tile_base[element_ref_ix]
+ (sh_tile_stride[element_ref_ix] * tile_y + tile_x) * Tile_size));
AnnoImage fill_img = Annotated_Image_read(conf.anno_alloc, ref);
if (!alloc_cmd(cmd_alloc, cmd_ref, cmd_limit)) {
break;
}
write_fill(cmd_alloc, cmd_ref, tag.flags, tile, fill_img.linewidth);
Cmd_Image_write(cmd_alloc, cmd_ref, CmdImage(fill_img.index, fill_img.offset));
cmd_ref.offset += 4 + CmdImage_size;
break;
case Annotated_BeginClip:
tile = Tile_read(read_tile_alloc(element_ref_ix, mem_ok), TileRef(sh_tile_base[element_ref_ix]
+ (sh_tile_stride[element_ref_ix] * tile_y + tile_x) * Tile_size));
if (tile.tile.offset == 0 && tile.backdrop == 0) {
clip_zero_depth = clip_depth + 1;
} else if (tile.tile.offset == 0 && clip_depth < 32) {
clip_one_mask |= (1 << clip_depth);
} else {
AnnoBeginClip begin_clip = Annotated_BeginClip_read(conf.anno_alloc, ref);
if (!alloc_cmd(cmd_alloc, cmd_ref, cmd_limit)) {
break;
}
write_fill(cmd_alloc, cmd_ref, tag.flags, tile, begin_clip.linewidth);
Cmd_BeginClip_write(cmd_alloc, cmd_ref);
cmd_ref.offset += 4;
if (clip_depth < 32) {
clip_one_mask &= ~(1 << clip_depth);
}
begin_slot++;
num_begin_slots = max(num_begin_slots, begin_slot);
}
clip_depth++;
break;
case Annotated_EndClip:
clip_depth--;
if (clip_depth >= 32 || (clip_one_mask & (1 << clip_depth)) == 0) {
if (!alloc_cmd(cmd_alloc, cmd_ref, cmd_limit)) {
break;
}
Cmd_Solid_write(cmd_alloc, cmd_ref);
cmd_ref.offset += 4;
begin_slot--;
Cmd_EndClip_write(cmd_alloc, cmd_ref);
cmd_ref.offset += 4;
}
break;
}
} else {
// In "clip zero" state, suppress all drawing
switch (tag.tag) {
case Annotated_BeginClip:
clip_depth++;
break;
case Annotated_EndClip:
if (clip_depth == clip_zero_depth) {
clip_zero_depth = 0;
}
clip_depth--;
break;
}
}
}
barrier();
rd_ix += N_TILE;
if (rd_ix >= ready_ix && partition_ix >= n_partitions) break;
}
if (bin_tile_x + tile_x < conf.width_in_tiles && bin_tile_y + tile_y < conf.height_in_tiles) {
Cmd_End_write(cmd_alloc, cmd_ref);
if (num_begin_slots > 0) {
// Write scratch allocation: one state per BeginClip per rasterizer chunk.
uint scratch_size = num_begin_slots * TILE_WIDTH_PX * TILE_HEIGHT_PX * CLIP_STATE_SIZE * 4;
MallocResult scratch = malloc(scratch_size);
// Ignore scratch.failed; we don't use the allocation and kernel4
// checks for memory overflow before using it.
alloc_write(scratch_alloc, scratch_alloc.offset, scratch.alloc);
}
}
}