vello/piet-wgsl/shader/path_coarse_full.wgsl
Raph Levien 94a310a245 Clean up unneded type annotations in vec
Now that wgsl-analyzer 0.6 is released, most explicit type annotations on vec can be dropped (the exception being when it is a type conversion).

Also changes mix to select when the selector is actually boolean.
2022-11-25 09:37:11 -08:00

261 lines
9.5 KiB
GLSL

// SPDX-License-Identifier: Apache-2.0 OR MIT OR Unlicense
// Path coarse rasterization for the full implementation.
#import config
#import pathtag
#import tile
#import segment
#import cubic
#import bump
@group(0) @binding(0)
var<storage> config: Config;
@group(0) @binding(1)
var<storage> scene: array<u32>;
@group(0) @binding(2)
var<storage> tag_monoids: array<TagMonoid>;
@group(0) @binding(3)
var<storage> cubics: array<Cubic>;
@group(0) @binding(4)
var<storage> paths: array<Path>;
// We don't get this from import as it's the atomic version
struct AtomicTile {
backdrop: atomic<i32>,
segments: atomic<u32>,
}
@group(0) @binding(5)
var<storage, read_write> bump: BumpAllocators;
@group(0) @binding(6)
var<storage, read_write> tiles: array<AtomicTile>;
@group(0) @binding(7)
var<storage, read_write> segments: array<Segment>;
struct SubdivResult {
val: f32,
a0: f32,
a2: f32,
}
let D = 0.67;
fn approx_parabola_integral(x: f32) -> f32 {
return x * inverseSqrt(sqrt(1.0 - D + (D * D * D * D + 0.25 * x * x)));
}
let B = 0.39;
fn approx_parabola_inv_integral(x: f32) -> f32 {
return x * sqrt(1.0 - B + (B * B + 0.5 * x * x));
}
fn estimate_subdiv(p0: vec2<f32>, p1: vec2<f32>, p2: vec2<f32>, sqrt_tol: f32) -> SubdivResult {
let d01 = p1 - p0;
let d12 = p2 - p1;
let dd = d01 - d12;
let cross = (p2.x - p0.x) * dd.y - (p2.y - p0.y) * dd.x;
let cross_inv = 1.0 / cross;
let x0 = dot(d01, dd) * cross_inv;
let x2 = dot(d12, dd) * cross_inv;
let scale = abs(cross / (length(dd) * (x2 - x0)));
let a0 = approx_parabola_integral(x0);
let a2 = approx_parabola_integral(x2);
var val = 0.0;
if scale < 1e9 {
let da = abs(a2 - a0);
let sqrt_scale = sqrt(scale);
if sign(x0) == sign(x2) {
val = sqrt_scale;
} else {
let xmin = sqrt_tol / sqrt_scale;
val = sqrt_tol / approx_parabola_integral(xmin);
}
val *= da;
}
return SubdivResult(val, a0, a2);
}
fn eval_quad(p0: vec2<f32>, p1: vec2<f32>, p2: vec2<f32>, t: f32) -> vec2<f32> {
let mt = 1.0 - t;
return p0 * (mt * mt) + (p1 * (mt * 2.0) + p2 * t) * t;
}
fn eval_cubic(p0: vec2<f32>, p1: vec2<f32>, p2: vec2<f32>, p3: vec2<f32>, t: f32) -> vec2<f32> {
let mt = 1.0 - t;
return p0 * (mt * mt * mt) + (p1 * (mt * mt * 3.0) + (p2 * (mt * 3.0) + p3 * t) * t) * t;
}
fn alloc_segment() -> u32 {
return atomicAdd(&bump.segments, 1u) + 1u;
}
let MAX_QUADS = 16u;
@compute @workgroup_size(256)
fn main(
@builtin(global_invocation_id) global_id: vec3<u32>,
) {
let ix = global_id.x;
let tag_word = scene[config.pathtag_base + (ix >> 2u)];
let shift = (ix & 3u) * 8u;
var tag_byte = (tag_word >> shift) & 0xffu;
if (tag_byte & PATH_TAG_SEG_TYPE) != 0u {
// Discussion question: it might actually be cheaper to do the path segment
// decoding & transform again rather than store the result in a buffer;
// classic memory vs ALU tradeoff.
let cubic = cubics[global_id.x];
let path = paths[cubic.path_ix];
let bbox = vec4<i32>(path.bbox);
let p0 = cubic.p0;
let p1 = cubic.p1;
let p2 = cubic.p2;
let p3 = cubic.p3;
let err_v = 3.0 * (p2 - p1) + p0 - p3;
let err = dot(err_v, err_v);
let ACCURACY = 0.25;
let Q_ACCURACY = ACCURACY * 0.1;
let REM_ACCURACY = (ACCURACY - Q_ACCURACY);
let MAX_HYPOT2 = 432.0 * Q_ACCURACY * Q_ACCURACY;
var n_quads = max(u32(ceil(pow(err * (1.0 / MAX_HYPOT2), 1.0 / 6.0))), 1u);
n_quads = min(n_quads, MAX_QUADS);
var keep_params: array<SubdivResult, MAX_QUADS>;
var val = 0.0;
var qp0 = p0;
let step = 1.0 / f32(n_quads);
for (var i = 0u; i < n_quads; i += 1u) {
let t = f32(i + 1u) * step;
let qp2 = eval_cubic(p0, p1, p2, p3, t);
var qp1 = eval_cubic(p0, p1, p2, p3, t - 0.5 * step);
qp1 = 2.0 * qp1 - 0.5 * (qp0 + qp2);
let params = estimate_subdiv(qp0, qp1, qp2, sqrt(REM_ACCURACY));
keep_params[i] = params;
val += params.val;
qp0 = qp2;
}
let n = max(u32(ceil(val * (0.5 / sqrt(REM_ACCURACY)))), 1u);
var lp0 = p0;
qp0 = p0;
let v_step = val / f32(n);
var n_out = 1u;
var val_sum = 0.0;
for (var i = 0u; i < n_quads; i += 1u) {
let t = f32(i + 1u) * step;
let qp2 = eval_cubic(p0, p1, p2, p3, t);
var qp1 = eval_cubic(p0, p1, p2, p3, t - 0.5 * step);
qp1 = 2.0 * qp1 - 0.5 * (qp0 + qp2);
let params = keep_params[i];
let u0 = approx_parabola_inv_integral(params.a0);
let u2 = approx_parabola_inv_integral(params.a2);
let uscale = 1.0 / (u2 - u0);
var val_target = f32(n_out) * v_step;
while n_out == n || val_target < val_sum + params.val {
var lp1: vec2<f32>;
if n_out == n {
lp1 = p3;
} else {
let u = (val_target - val_sum) / params.val;
let a = mix(params.a0, params.a2, u);
let au = approx_parabola_inv_integral(a);
let t = (au - u0) * uscale;
lp1 = eval_quad(qp0, qp1, qp2, t);
}
// Output line segment lp0..lp1
let xymin = min(lp0, lp1);
let xymax = max(lp0, lp1);
let dp = lp1 - lp0;
let recip_dx = 1.0 / dp.x;
let invslope = select(dp.x / dp.y, 1.0e9, abs(dp.y) < 1.0e-9);
let c = 0.5 * abs(invslope);
let b = invslope;
let SX = 1.0 / f32(TILE_WIDTH);
let SY = 1.0 / f32(TILE_HEIGHT);
let a = (lp0.x - (lp0.y - 0.5 * f32(TILE_HEIGHT)) * b) * SX;
var x0 = i32(floor(xymin.x * SX));
var x1 = i32(floor(xymax.x * SX) + 1.0);
var y0 = i32(floor(xymin.y * SY));
var y1 = i32(floor(xymax.y * SY) + 1.0);
x0 = clamp(x0, bbox.x, bbox.z);
x1 = clamp(x1, bbox.x, bbox.z);
y0 = clamp(y0, bbox.y, bbox.w);
y1 = clamp(y1, bbox.y, bbox.w);
var xc = a + b * f32(y0);
let stride = bbox.z - bbox.x;
var base = i32(path.tiles) + (y0 - bbox.y) * stride - bbox.x;
var xray = i32(floor(lp0.x * SX));
var last_xray = i32(floor(lp1.x * SX));
if dp.y < 0.0 {
let tmp = xray;
xray = last_xray;
last_xray = tmp;
}
for (var y = y0; y < y1; y += 1) {
let tile_y0 = f32(y) * f32(TILE_HEIGHT);
let xbackdrop = max(xray + 1, bbox.x);
if xymin.y < tile_y0 && xbackdrop < bbox.z {
let backdrop = select(-1, 1, dp.y < 0.0);
let tile_ix = base + xbackdrop;
atomicAdd(&tiles[tile_ix].backdrop, backdrop);
}
var next_xray = last_xray;
if y + 1 < y1 {
let tile_y1 = f32(y + 1) * f32(TILE_HEIGHT);
let x_edge = lp0.x + (tile_y1 - lp0.y) * invslope;
next_xray = i32(floor(x_edge * SX));
}
let min_xray = min(xray, next_xray);
let max_xray = max(xray, next_xray);
var xx0 = min(i32(floor(xc - c)), min_xray);
var xx1 = max(i32(ceil(xc + c)), max_xray + 1);
xx0 = clamp(xx0, x0, x1);
xx1 = clamp(xx1, x0, x1);
var tile_seg: Segment;
for (var x = xx0; x < xx1; x += 1) {
let tile_x0 = f32(x) * f32(TILE_WIDTH);
let tile_ix = base + x;
// allocate segment, insert linked list
let seg_ix = alloc_segment();
let old = atomicExchange(&tiles[tile_ix].segments, seg_ix);
tile_seg.origin = lp0;
tile_seg.delta = dp;
var y_edge = mix(lp0.y, lp1.y, (tile_x0 - lp0.x) * recip_dx);
if xymin.x < tile_x0 {
let p = vec2(tile_x0, y_edge);
if dp.x < 0.0 {
tile_seg.delta = p - lp0;
} else {
tile_seg.origin = p;
tile_seg.delta = lp1 - p;
}
if tile_seg.delta.x == 0.0 {
tile_seg.delta.x = sign(dp.x) * 1e-9;
}
}
if x <= min_xray || max_xray < x {
y_edge = 1e9;
}
tile_seg.y_edge = y_edge;
tile_seg.next = old;
segments[seg_ix] = tile_seg;
}
xc += b;
base += stride;
xray = next_xray;
}
n_out += 1u;
val_target += v_step;
lp0 = lp1;
}
val_sum += params.val;
qp0 = qp2;
}
}
}