vello/piet-gpu/shader/coarse.comp
Raph Levien e16f68d89d Fix buffer overrun
Was a little too eager zeroing out sh_is_segment[]
2020-05-26 22:47:28 -07:00

535 lines
21 KiB
Plaintext

// The coarse rasterizer stage of the pipeline.
#version 450
#extension GL_GOOGLE_include_directive : enable
#include "setup.h"
layout(local_size_x = N_TILE, local_size_y = 1) in;
layout(set = 0, binding = 0) buffer AnnotatedBuf {
uint[] annotated;
};
layout(set = 0, binding = 1) buffer BinsBuf {
uint[] bins;
};
layout(set = 0, binding = 2) buffer AllocBuf {
uint alloc;
};
layout(set = 0, binding = 3) buffer PtclBuf {
uint[] ptcl;
};
#include "annotated.h"
#include "bins.h"
#include "ptcl.h"
#define N_RINGBUF 512
shared uint sh_elements[N_RINGBUF];
shared float sh_right_edge[N_RINGBUF];
shared uint sh_chunk[N_WG];
shared uint sh_chunk_next[N_WG];
shared uint sh_chunk_n[N_WG];
shared uint sh_min_buf;
// Some of these are kept in shared memory to ease register
// pressure, but it could go either way.
shared uint sh_first_el[N_WG];
shared uint sh_selected_n;
shared uint sh_elements_ref;
shared uint sh_bitmaps[N_SLICE][N_TILE];
shared uint sh_backdrop[N_SLICE][N_TILE];
shared uint sh_bd_sign[N_SLICE];
shared uint sh_is_segment[N_SLICE];
// Shared state for parallel segment output stage
// Count of total number of segments in each tile, then
// inclusive prefix sum of same.
shared uint sh_seg_count[N_TILE];
shared uint sh_seg_alloc;
// scale factors useful for converting coordinates to tiles
#define SX (1.0 / float(TILE_WIDTH_PX))
#define SY (1.0 / float(TILE_HEIGHT_PX))
// Perhaps cmd_limit should be a global? This is a style question.
void alloc_cmd(inout CmdRef cmd_ref, inout uint cmd_limit) {
if (cmd_ref.offset > cmd_limit) {
uint new_cmd = atomicAdd(alloc, PTCL_INITIAL_ALLOC);
CmdJump jump = CmdJump(new_cmd);
Cmd_Jump_write(cmd_ref, jump);
cmd_ref = CmdRef(new_cmd);
cmd_limit = new_cmd + PTCL_INITIAL_ALLOC - 2 * Cmd_size;
}
}
#define CHUNK_ALLOC_SLAB 16
uint alloc_chunk_remaining;
uint alloc_chunk_offset;
SegChunkRef alloc_seg_chunk() {
if (alloc_chunk_remaining == 0) {
alloc_chunk_offset = atomicAdd(alloc, CHUNK_ALLOC_SLAB * SegChunk_size);
alloc_chunk_remaining = CHUNK_ALLOC_SLAB;
}
uint offset = alloc_chunk_offset;
alloc_chunk_offset += SegChunk_size;
alloc_chunk_remaining--;
return SegChunkRef(offset);
}
// Accumulate delta to backdrop.
//
// Each bit for which bd_bitmap is 1 and bd_sign is 1 counts as +1, and each
// bit for which bd_bitmap is 1 and bd_sign is 0 counts as -1.
int count_backdrop(uint bd_bitmap, uint bd_sign) {
return bitCount(bd_bitmap & bd_sign) - bitCount(bd_bitmap & ~bd_sign);
}
void main() {
// Could use either linear or 2d layouts for both dispatch and
// invocations within the workgroup. We'll use variables to abstract.
uint bin_ix = N_TILE_X * gl_WorkGroupID.y + gl_WorkGroupID.x;
// Top left coordinates of this bin.
vec2 xy0 = vec2(N_TILE_X * TILE_WIDTH_PX * gl_WorkGroupID.x, N_TILE_Y * TILE_HEIGHT_PX * gl_WorkGroupID.y);
uint th_ix = gl_LocalInvocationID.x;
uint tile_x = N_TILE_X * gl_WorkGroupID.x + gl_LocalInvocationID.x % N_TILE_X;
uint tile_y = N_TILE_Y * gl_WorkGroupID.y + gl_LocalInvocationID.x / N_TILE_X;
uint tile_ix = tile_y * WIDTH_IN_TILES + tile_x;
CmdRef cmd_ref = CmdRef(tile_ix * PTCL_INITIAL_ALLOC);
uint cmd_limit = cmd_ref.offset + PTCL_INITIAL_ALLOC - 2 * Cmd_size;
// Allocation and management of segment output
SegChunkRef first_seg_chunk = SegChunkRef(0);
SegChunkRef last_chunk_ref = SegChunkRef(0);
uint last_chunk_n = 0;
SegmentRef last_chunk_segs = SegmentRef(0);
alloc_chunk_remaining = 0;
uint wr_ix = 0;
uint rd_ix = 0;
uint first_el;
if (th_ix < N_WG) {
uint start_chunk = (bin_ix * N_WG + th_ix) * BIN_INITIAL_ALLOC;
sh_chunk[th_ix] = start_chunk;
BinChunk chunk = BinChunk_read(BinChunkRef(start_chunk));
sh_chunk_n[th_ix] = chunk.n;
sh_chunk_next[th_ix] = chunk.next.offset;
sh_first_el[th_ix] = chunk.n > 0 ?
BinInstance_read(BinInstanceRef(start_chunk + BinChunk_size)).element_ix : ~0;
}
if (th_ix < N_SLICE) {
sh_bd_sign[th_ix] = 0;
}
int backdrop = 0;
while (true) {
for (uint i = 0; i < N_SLICE; i++) {
sh_bitmaps[i][th_ix] = 0;
sh_backdrop[i][th_ix] = 0;
}
if (th_ix < N_SLICE) {
sh_is_segment[th_ix] = 0;
}
while (wr_ix - rd_ix <= N_TILE) {
// Choose segment with least element.
uint my_min;
if (th_ix < N_WG) {
if (th_ix == 0) {
sh_selected_n = 0;
sh_min_buf = ~0;
}
}
barrier();
// Tempting to do this with subgroups, but atomic should be good enough.
if (th_ix < N_WG) {
my_min = sh_first_el[th_ix];
atomicMin(sh_min_buf, my_min);
}
barrier();
if (th_ix < N_WG) {
if (my_min == sh_min_buf && my_min != ~0) {
sh_elements_ref = sh_chunk[th_ix] + BinChunk_size;
uint selected_n = sh_chunk_n[th_ix];
sh_selected_n = selected_n;
uint next_chunk = sh_chunk_next[th_ix];
if (next_chunk == 0) {
sh_first_el[th_ix] = ~0;
} else {
sh_chunk[th_ix] = next_chunk;
BinChunk chunk = BinChunk_read(BinChunkRef(next_chunk));
sh_chunk_n[th_ix] = chunk.n;
sh_chunk_next[th_ix] = chunk.next.offset;
sh_first_el[th_ix] = BinInstance_read(
BinInstanceRef(next_chunk + BinChunk_size)).element_ix;
}
}
}
barrier();
uint chunk_n = sh_selected_n;
if (chunk_n == 0) {
// All chunks consumed
break;
}
BinInstanceRef inst_ref = BinInstanceRef(sh_elements_ref);
if (th_ix < chunk_n) {
BinInstance inst = BinInstance_read(BinInstance_index(inst_ref, th_ix));
uint wr_el_ix = (wr_ix + th_ix) % N_RINGBUF;
sh_elements[wr_el_ix] = inst.element_ix;
sh_right_edge[wr_el_ix] = inst.right_edge;
}
wr_ix += chunk_n;
}
barrier();
// We've done the merge and filled the buffer.
// Read one element, compute coverage.
uint tag = Annotated_Nop;
AnnotatedRef ref;
float right_edge = 0.0;
if (th_ix + rd_ix < wr_ix) {
uint rd_el_ix = (rd_ix + th_ix) % N_RINGBUF;
uint element_ix = sh_elements[rd_el_ix];
right_edge = sh_right_edge[rd_el_ix];
ref = AnnotatedRef(element_ix * Annotated_size);
tag = Annotated_tag(ref);
}
// Setup for coverage algorithm.
float a, b, c;
// Bounding box of element in pixel coordinates.
float xmin, xmax, ymin, ymax;
uint my_slice = th_ix / 32;
uint my_mask = 1 << (th_ix & 31);
switch (tag) {
case Annotated_FillLine:
case Annotated_StrokeLine:
AnnoStrokeLineSeg line = Annotated_StrokeLine_read(ref);
xmin = min(line.p0.x, line.p1.x) - line.stroke.x;
xmax = max(line.p0.x, line.p1.x) + line.stroke.x;
ymin = min(line.p0.y, line.p1.y) - line.stroke.y;
ymax = max(line.p0.y, line.p1.y) + line.stroke.y;
float dx = line.p1.x - line.p0.x;
float dy = line.p1.y - line.p0.y;
if (tag == Annotated_FillLine) {
// Set bit for backdrop sign calculation, 1 is +1, 0 is -1.
if (dy < 0) {
atomicOr(sh_bd_sign[my_slice], my_mask);
} else {
atomicAnd(sh_bd_sign[my_slice], ~my_mask);
}
}
atomicOr(sh_is_segment[my_slice], my_mask);
// Set up for per-scanline coverage formula, below.
float invslope = abs(dy) < 1e-9 ? 1e9 : dx / dy;
c = (line.stroke.x + abs(invslope) * (0.5 * float(TILE_HEIGHT_PX) + line.stroke.y)) * SX;
b = invslope; // Note: assumes square tiles, otherwise scale.
a = (line.p0.x - xy0.x - (line.p0.y - 0.5 * float(TILE_HEIGHT_PX) - xy0.y) * b) * SX;
break;
case Annotated_Fill:
case Annotated_Stroke:
// Note: we take advantage of the fact that fills and strokes
// have compatible layout.
AnnoFill fill = Annotated_Fill_read(ref);
xmin = fill.bbox.x;
xmax = fill.bbox.z;
ymin = fill.bbox.y;
ymax = fill.bbox.w;
// Just let the clamping to xmin and xmax determine the bounds.
a = 0.0;
b = 0.0;
c = 1e9;
break;
default:
ymin = 0;
ymax = 0;
break;
}
// Draw the coverage area into the bitmasks. This uses an algorithm
// that computes the coverage of a span for given scanline.
// Compute bounding box in tiles and clip to this bin.
int x0 = int(floor((xmin - xy0.x) * SX));
int x1 = int(ceil((xmax - xy0.x) * SX));
int xr = int(ceil((right_edge - xy0.x) * SX));
int y0 = int(floor((ymin - xy0.y) * SY));
int y1 = int(ceil((ymax - xy0.y) * SY));
x0 = clamp(x0, 0, N_TILE_X);
x1 = clamp(x1, x0, N_TILE_X);
xr = clamp(xr, 0, N_TILE_X);
y0 = clamp(y0, 0, N_TILE_Y);
y1 = clamp(y1, y0, N_TILE_Y);
float t = a + b * float(y0);
for (uint y = y0; y < y1; y++) {
uint xx0 = clamp(int(floor(t - c)), x0, x1);
uint xx1 = clamp(int(ceil(t + c)), x0, x1);
for (uint x = xx0; x < xx1; x++) {
atomicOr(sh_bitmaps[my_slice][y * N_TILE_X + x], my_mask);
}
if (tag == Annotated_FillLine && ymin <= xy0.y + float(y * TILE_HEIGHT_PX)) {
// Assign backdrop to all tiles to the right of the ray crossing the
// top edge of this tile, up to the right edge of the fill bbox.
float xray = t - 0.5 * b;
xx0 = max(int(ceil(xray)), 0);
for (uint x = xx0; x < xr; x++) {
atomicOr(sh_backdrop[my_slice][y * N_TILE_X + x], my_mask);
}
}
t += b;
}
barrier();
// We've computed coverage and other info for each element in the input, now for
// the output stage. We'll do segments first using a more parallel algorithm.
uint seg_count = 0;
for (uint i = 0; i < N_SLICE; i++) {
seg_count += bitCount(sh_bitmaps[i][th_ix] & sh_is_segment[i]);
}
sh_seg_count[th_ix] = seg_count;
// Prefix sum of sh_seg_count
for (uint i = 0; i < LG_N_TILE; i++) {
barrier();
if (th_ix >= (1 << i)) {
seg_count += sh_seg_count[th_ix - (1 << i)];
}
barrier();
sh_seg_count[th_ix] = seg_count;
}
if (th_ix == N_TILE - 1) {
sh_seg_alloc = atomicAdd(alloc, seg_count * Segment_size);
}
barrier();
uint total_seg_count = sh_seg_count[N_TILE - 1];
uint seg_alloc = sh_seg_alloc;
// Output buffer is allocated as segments for each tile laid end-to-end.
for (uint ix = th_ix; ix < total_seg_count; ix += N_TILE) {
// Find the work item; this thread is now not bound to an element or tile.
// First find the tile (by binary search)
uint tile_ix = 0;
for (uint i = 0; i < LG_N_TILE; i++) {
uint probe = tile_ix + ((N_TILE / 2) >> i);
if (ix >= sh_seg_count[probe - 1]) {
tile_ix = probe;
}
}
// Now, sh_seg_count[tile_ix - 1] <= ix < sh_seg_count[tile_ix].
// (considering sh_seg_count[-1] == 0)
// Index of segment within tile's segments
uint seq_ix = ix;
// Maybe consider a sentinel value to avoid the conditional?
if (tile_ix > 0) {
seq_ix -= sh_seg_count[tile_ix - 1];
}
// Find the segment. This is done by linear scan through the bitmaps of the
// tile, accelerated by bit counting. Binary search might help, maybe not.
uint slice_ix = 0;
uint seq_bits;
while (true) {
seq_bits = sh_bitmaps[slice_ix][tile_ix] & sh_is_segment[slice_ix];
uint this_count = bitCount(seq_bits);
if (this_count > seq_ix) {
break;
}
seq_ix -= this_count;
slice_ix++;
}
// Now find position of nth bit set (n = seq_ix) in seq_bits; binary search
uint bit_ix = 0;
for (int i = 0; i < 5; i++) {
uint probe = bit_ix + (16 >> i);
if (seq_ix >= bitCount(seq_bits & ((1 << probe) - 1))) {
bit_ix = probe;
}
}
uint out_offset = seg_alloc + Segment_size * ix + SegChunk_size;
uint rd_el_ix = (rd_ix + slice_ix * 32 + bit_ix) % N_RINGBUF;
uint element_ix = sh_elements[rd_el_ix];
ref = AnnotatedRef(element_ix * Annotated_size);
AnnoFillLineSeg line = Annotated_FillLine_read(ref);
float y_edge = 0.0;
// This is basically the same logic as piet-metal, but should be made numerically robust.
if (Annotated_tag(ref) == Annotated_FillLine) {
vec2 tile_xy = xy0 + vec2((tile_ix % N_TILE_X) * TILE_WIDTH_PX, (tile_ix / N_TILE_X) * TILE_HEIGHT_PX);
y_edge = mix(line.p0.y, line.p1.y, (tile_xy.x - line.p0.x) / (line.p1.x - line.p0.x));
if (min(line.p0.x, line.p1.x) < tile_xy.x && y_edge >= tile_xy.y && y_edge < tile_xy.y + TILE_HEIGHT_PX) {
if (line.p0.x > line.p1.x) {
line.p1 = vec2(tile_xy.x, y_edge);
} else {
line.p0 = vec2(tile_xy.x, y_edge);
}
} else {
y_edge = 1e9;
}
}
Segment seg = Segment(line.p0, line.p1, y_edge);
Segment_write(SegmentRef(seg_alloc + Segment_size * ix), seg);
}
// Output non-segment elements for this tile. The thread does a sequential walk
// through the non-segment elements, and for segments, count and backdrop are
// aggregated using bit counting.
uint slice_ix = 0;
uint bitmap = sh_bitmaps[0][th_ix];
uint bd_bitmap = sh_backdrop[0][th_ix];
uint bd_sign = sh_bd_sign[0];
uint is_segment = sh_is_segment[0];
uint seg_start = th_ix == 0 ? 0 : sh_seg_count[th_ix - 1];
seg_count = 0;
while (true) {
uint nonseg_bitmap = bitmap & ~is_segment;
if (nonseg_bitmap == 0) {
backdrop += count_backdrop(bd_bitmap, bd_sign);
seg_count += bitCount(bitmap & is_segment);
slice_ix++;
if (slice_ix == N_SLICE) {
break;
}
bitmap = sh_bitmaps[slice_ix][th_ix];
bd_bitmap = sh_backdrop[slice_ix][th_ix];
bd_sign = sh_bd_sign[slice_ix];
is_segment = sh_is_segment[slice_ix];
nonseg_bitmap = bitmap & ~is_segment;
if (nonseg_bitmap == 0) {
continue;
}
}
uint element_ref_ix = slice_ix * 32 + findLSB(nonseg_bitmap);
uint element_ix = sh_elements[(rd_ix + element_ref_ix) % N_RINGBUF];
// Bits up to and including the lsb
uint bd_mask = (nonseg_bitmap - 1) ^ nonseg_bitmap;
backdrop += count_backdrop(bd_bitmap & bd_mask, bd_sign);
seg_count += bitCount(bitmap & bd_mask & is_segment);
// Clear bits that have been consumed.
bd_bitmap &= ~bd_mask;
bitmap &= ~bd_mask;
// At this point, we read the element again from global memory.
// If that turns out to be expensive, maybe we can pack it into
// shared memory (or perhaps just the tag).
ref = AnnotatedRef(element_ix * Annotated_size);
tag = Annotated_tag(ref);
switch (tag) {
case Annotated_Fill:
if (last_chunk_n > 0 || seg_count > 0) {
SegChunkRef chunk_ref = SegChunkRef(0);
if (seg_count > 0) {
chunk_ref = alloc_seg_chunk();
SegChunk chunk;
chunk.n = seg_count;
chunk.next = SegChunkRef(0);
uint seg_offset = seg_alloc + seg_start * Segment_size;
chunk.segs = SegmentRef(seg_offset);
SegChunk_write(chunk_ref, chunk);
}
if (last_chunk_n > 0) {
SegChunk chunk;
chunk.n = last_chunk_n;
chunk.next = chunk_ref;
chunk.segs = last_chunk_segs;
SegChunk_write(last_chunk_ref, chunk);
} else {
first_seg_chunk = chunk_ref;
}
AnnoFill fill = Annotated_Fill_read(ref);
CmdFill cmd_fill;
cmd_fill.seg_ref = first_seg_chunk;
cmd_fill.backdrop = backdrop;
cmd_fill.rgba_color = fill.rgba_color;
alloc_cmd(cmd_ref, cmd_limit);
Cmd_Fill_write(cmd_ref, cmd_fill);
cmd_ref.offset += Cmd_size;
last_chunk_n = 0;
} else if (backdrop != 0) {
AnnoFill fill = Annotated_Fill_read(ref);
alloc_cmd(cmd_ref, cmd_limit);
Cmd_Solid_write(cmd_ref, CmdSolid(fill.rgba_color));
cmd_ref.offset += Cmd_size;
}
seg_start += seg_count;
seg_count = 0;
backdrop = 0;
break;
case Annotated_Stroke:
// TODO: reduce divergence & code duplication? Much of the
// fill and stroke processing is in common.
if (last_chunk_n > 0 || seg_count > 0) {
SegChunkRef chunk_ref = SegChunkRef(0);
if (seg_count > 0) {
chunk_ref = alloc_seg_chunk();
SegChunk chunk;
chunk.n = seg_count;
chunk.next = SegChunkRef(0);
uint seg_offset = seg_alloc + seg_start * Segment_size;
chunk.segs = SegmentRef(seg_offset);
SegChunk_write(chunk_ref, chunk);
}
if (last_chunk_n > 0) {
SegChunk chunk;
chunk.n = last_chunk_n;
chunk.next = chunk_ref;
chunk.segs = last_chunk_segs;
SegChunk_write(last_chunk_ref, chunk);
} else {
first_seg_chunk = chunk_ref;
}
AnnoStroke stroke = Annotated_Stroke_read(ref);
CmdStroke cmd_stroke;
cmd_stroke.seg_ref = first_seg_chunk;
cmd_stroke.half_width = 0.5 * stroke.linewidth;
cmd_stroke.rgba_color = stroke.rgba_color;
alloc_cmd(cmd_ref, cmd_limit);
Cmd_Stroke_write(cmd_ref, cmd_stroke);
cmd_ref.offset += Cmd_size;
last_chunk_n = 0;
}
seg_start += seg_count;
seg_count = 0;
break;
default:
// This shouldn't happen, but just in case.
seg_start++;
break;
}
}
if (seg_count > 0) {
SegChunkRef chunk_ref = alloc_seg_chunk();
if (last_chunk_n > 0) {
SegChunk_write(last_chunk_ref, SegChunk(last_chunk_n, chunk_ref, last_chunk_segs));
} else {
first_seg_chunk = chunk_ref;
}
// TODO: free two registers by writing count and segments ref now,
// as opposed to deferring SegChunk write until all fields are known.
last_chunk_ref = chunk_ref;
last_chunk_n = seg_count;
uint seg_offset = seg_alloc + seg_start * Segment_size;
last_chunk_segs = SegmentRef(seg_offset);
}
barrier();
rd_ix += N_TILE;
// The second disjunct is there as a strange workaround on Nvidia. If it is
// removed, then the kernel fails with ERROR_DEVICE_LOST.
if (rd_ix >= wr_ix || bin_ix == ~0) break;
}
Cmd_End_write(cmd_ref);
}