vello/piet-gpu/shader/backdrop.comp
Elias Naur feeb459fa1 remove FillMask and FillMaskInv
Obsoleted by BeginClip/EndClip.

Updates #36

Signed-off-by: Elias Naur <mail@eliasnaur.com>
2020-11-29 16:59:58 +01:00

107 lines
3.5 KiB
Plaintext

// Propagation of tile backdrop for filling.
//
// Each thread reads one path element and calculates the number of spanned tiles
// based on the bounding box.
// In a further compaction step, the workgroup loops over the corresponding tile rows per element in parallel.
// For each row the per tile backdrop will be read, as calculated in the previous coarse path segment kernel,
// and propagated from the left to the right (prefix summed).
//
// Output state:
// - Each path element has an array of tiles covering the whole path based on boundig box
// - Each tile per path element contains the 'backdrop' and a list of subdivided path segments
#version 450
#extension GL_GOOGLE_include_directive : enable
#include "setup.h"
#define LG_BACKDROP_WG (7 + LG_WG_FACTOR)
#define BACKDROP_WG (1 << LG_BACKDROP_WG)
layout(local_size_x = BACKDROP_WG, local_size_y = 1) in;
layout(set = 0, binding = 0) buffer AnnotatedBuf {
uint[] annotated;
};
// This is really only used for n_elements; maybe we can handle that
// a different way, but it's convenient to have the same signature as
// tile allocation.
layout(set = 0, binding = 1) readonly buffer AllocBuf {
uint n_elements; // paths
uint n_pathseg;
uint alloc;
};
layout(set = 0, binding = 2) buffer TileBuf {
uint[] tile;
};
#include "annotated.h"
#include "tile.h"
shared uint sh_row_count[BACKDROP_WG];
shared uint sh_row_base[BACKDROP_WG];
shared uint sh_row_width[BACKDROP_WG];
void main() {
uint th_ix = gl_LocalInvocationID.x;
uint element_ix = gl_GlobalInvocationID.x;
AnnotatedRef ref = AnnotatedRef(element_ix * Annotated_size);
// Work assignment: 1 thread : 1 path element
uint row_count = 0;
if (element_ix < n_elements) {
uint tag = Annotated_tag(ref);
switch (tag) {
case Annotated_Fill:
case Annotated_BeginClip:
PathRef path_ref = PathRef(element_ix * Path_size);
Path path = Path_read(path_ref);
sh_row_width[th_ix] = path.bbox.z - path.bbox.x;
row_count = path.bbox.w - path.bbox.y;
if (row_count == 1) {
// Note: this can probably be expanded to width = 2 as
// long as it doesn't cross the left edge.
row_count = 0;
}
sh_row_base[th_ix] = (path.tiles.offset >> 2) + 1;
}
}
sh_row_count[th_ix] = row_count;
// Prefix sum of sh_row_count
for (uint i = 0; i < LG_BACKDROP_WG; i++) {
barrier();
if (th_ix >= (1 << i)) {
row_count += sh_row_count[th_ix - (1 << i)];
}
barrier();
sh_row_count[th_ix] = row_count;
}
barrier();
// Work assignment: 1 thread : 1 path element row
uint total_rows = sh_row_count[BACKDROP_WG - 1];
for (uint row = th_ix; row < total_rows; row += BACKDROP_WG) {
// Binary search to find element
uint el_ix = 0;
for (uint i = 0; i < LG_BACKDROP_WG; i++) {
uint probe = el_ix + ((BACKDROP_WG / 2) >> i);
if (row >= sh_row_count[probe - 1]) {
el_ix = probe;
}
}
uint seq_ix = row - (el_ix > 0 ? sh_row_count[el_ix - 1] : 0);
uint width = sh_row_width[el_ix];
// Process one row sequentially
// Read backdrop value per tile and prefix sum it
uint tile_el_ix = sh_row_base[el_ix] + seq_ix * 2 * width;
uint sum = tile[tile_el_ix];
for (uint x = 1; x < width; x++) {
tile_el_ix += 2;
sum += tile[tile_el_ix];
tile[tile_el_ix] = sum;
}
}
}