vello/piet-gpu/shader/path_coarse.comp
Elias Naur d9d518b248 avoid non-uniform barrier control flow when exhausting memory
The compute shaders have a check for the succesful completion of their
preceding stage. However, consider a shader execution path like the
following:

	void main()
		if (mem_error != NO_ERROR) {
		    return;
		}
		...
		malloc(...);
		...
		barrier();
		...
	}

and  shader execution that fails to allocate memory, thereby setting
mem_error to ERR_MALLOC_FAILED in malloc before reaching the barrier. If
another shader execution then begins execution, its mem_eror check will
make it return early and not reach the barrier.

All GPU APIs require (dynamically) uniform control flow for barriers,
and the above case may lead to GPU hangs in practice.

Fix this issue by replacing the early exits with careful checks that
don't interrupt barrier control flow.

Unfortunately, it's harder to prove the soundness of the new checks, so
this change also clears dynamic memory ranges in MEM_DEBUG mode when
memory is exhausted. The result is that accessing memory after
exhaustion triggers an error.

Signed-off-by: Elias Naur <mail@eliasnaur.com>
2021-04-20 10:15:29 +02:00

290 lines
12 KiB
Text

// SPDX-License-Identifier: Apache-2.0 OR MIT OR Unlicense
// Coarse rasterization of path segments.
// Allocation and initialization of tiles for paths.
#version 450
#extension GL_GOOGLE_include_directive : enable
#include "mem.h"
#include "setup.h"
#define LG_COARSE_WG 5
#define COARSE_WG (1 << LG_COARSE_WG)
layout(local_size_x = COARSE_WG, local_size_y = 1) in;
layout(set = 0, binding = 1) readonly buffer ConfigBuf {
Config conf;
};
#include "pathseg.h"
#include "tile.h"
// scale factors useful for converting coordinates to tiles
#define SX (1.0 / float(TILE_WIDTH_PX))
#define SY (1.0 / float(TILE_HEIGHT_PX))
#define ACCURACY 0.25
#define Q_ACCURACY (ACCURACY * 0.1)
#define REM_ACCURACY (ACCURACY - Q_ACCURACY)
#define MAX_HYPOT2 (432.0 * Q_ACCURACY * Q_ACCURACY)
vec2 eval_quad(vec2 p0, vec2 p1, vec2 p2, float t) {
float mt = 1.0 - t;
return p0 * (mt * mt) + (p1 * (mt * 2.0) + p2 * t) * t;
}
vec2 eval_cubic(vec2 p0, vec2 p1, vec2 p2, vec2 p3, float t) {
float mt = 1.0 - t;
return p0 * (mt * mt * mt) + (p1 * (mt * mt * 3.0) + (p2 * (mt * 3.0) + p3 * t) * t) * t;
}
struct SubdivResult {
float val;
float a0;
float a2;
};
/// An approximation to $\int (1 + 4x^2) ^ -0.25 dx$
///
/// This is used for flattening curves.
#define D 0.67
float approx_parabola_integral(float x) {
return x * inversesqrt(sqrt(1.0 - D + (D * D * D * D + 0.25 * x * x)));
}
/// An approximation to the inverse parabola integral.
#define B 0.39
float approx_parabola_inv_integral(float x) {
return x * sqrt(1.0 - B + (B * B + 0.25 * x * x));
}
SubdivResult estimate_subdiv(vec2 p0, vec2 p1, vec2 p2, float sqrt_tol) {
vec2 d01 = p1 - p0;
vec2 d12 = p2 - p1;
vec2 dd = d01 - d12;
float cross = (p2.x - p0.x) * dd.y - (p2.y - p0.y) * dd.x;
float x0 = (d01.x * dd.x + d01.y * dd.y) / cross;
float x2 = (d12.x * dd.x + d12.y * dd.y) / cross;
float scale = abs(cross / (length(dd) * (x2 - x0)));
float a0 = approx_parabola_integral(x0);
float a2 = approx_parabola_integral(x2);
float val = 0.0;
if (scale < 1e9) {
float da = abs(a2 - a0);
float sqrt_scale = sqrt(scale);
if (sign(x0) == sign(x2)) {
val = da * sqrt_scale;
} else {
float xmin = sqrt_tol / sqrt_scale;
val = sqrt_tol * da / approx_parabola_integral(xmin);
}
}
return SubdivResult(val, a0, a2);
}
void main() {
uint element_ix = gl_GlobalInvocationID.x;
PathSegRef ref = PathSegRef(conf.pathseg_alloc.offset + element_ix * PathSeg_size);
PathSegTag tag = PathSegTag(PathSeg_Nop, 0);
if (element_ix < conf.n_pathseg) {
tag = PathSeg_tag(conf.pathseg_alloc, ref);
}
bool mem_ok = mem_error == NO_ERROR;
switch (tag.tag) {
case PathSeg_Cubic:
PathCubic cubic = PathSeg_Cubic_read(conf.pathseg_alloc, ref);
uint trans_ix = cubic.trans_ix;
if (trans_ix > 0) {
TransformSegRef trans_ref = TransformSegRef(conf.trans_alloc.offset + (trans_ix - 1) * TransformSeg_size);
TransformSeg trans = TransformSeg_read(conf.trans_alloc, trans_ref);
cubic.p0 = trans.mat.xy * cubic.p0.x + trans.mat.zw * cubic.p0.y + trans.translate;
cubic.p1 = trans.mat.xy * cubic.p1.x + trans.mat.zw * cubic.p1.y + trans.translate;
cubic.p2 = trans.mat.xy * cubic.p2.x + trans.mat.zw * cubic.p2.y + trans.translate;
cubic.p3 = trans.mat.xy * cubic.p3.x + trans.mat.zw * cubic.p3.y + trans.translate;
}
vec2 err_v = 3.0 * (cubic.p2 - cubic.p1) + cubic.p0 - cubic.p3;
float err = err_v.x * err_v.x + err_v.y * err_v.y;
// The number of quadratics.
uint n_quads = max(uint(ceil(pow(err * (1.0 / MAX_HYPOT2), 1.0 / 6.0))), 1);
// Iterate over quadratics and tote up the estimated number of segments.
float val = 0.0;
vec2 qp0 = cubic.p0;
float step = 1.0 / float(n_quads);
for (uint i = 0; i < n_quads; i++) {
float t = float(i + 1) * step;
vec2 qp2 = eval_cubic(cubic.p0, cubic.p1, cubic.p2, cubic.p3, t);
vec2 qp1 = eval_cubic(cubic.p0, cubic.p1, cubic.p2, cubic.p3, t - 0.5 * step);
qp1 = 2.0 * qp1 - 0.5 * (qp0 + qp2);
SubdivResult params = estimate_subdiv(qp0, qp1, qp2, sqrt(REM_ACCURACY));
val += params.val;
qp0 = qp2;
}
uint n = max(uint(ceil(val * 0.5 / sqrt(REM_ACCURACY))), 1);
bool is_stroke = fill_mode_from_flags(tag.flags) == MODE_STROKE;
uint path_ix = cubic.path_ix;
Path path = Path_read(conf.tile_alloc, PathRef(conf.tile_alloc.offset + path_ix * Path_size));
Alloc path_alloc = new_alloc(path.tiles.offset, (path.bbox.z - path.bbox.x) * (path.bbox.w - path.bbox.y) * Tile_size, mem_ok);
ivec4 bbox = ivec4(path.bbox);
vec2 p0 = cubic.p0;
qp0 = cubic.p0;
float v_step = val / float(n);
int n_out = 1;
float val_sum = 0.0;
for (uint i = 0; i < n_quads; i++) {
float t = float(i + 1) * step;
vec2 qp2 = eval_cubic(cubic.p0, cubic.p1, cubic.p2, cubic.p3, t);
vec2 qp1 = eval_cubic(cubic.p0, cubic.p1, cubic.p2, cubic.p3, t - 0.5 * step);
qp1 = 2.0 * qp1 - 0.5 * (qp0 + qp2);
SubdivResult params = estimate_subdiv(qp0, qp1, qp2, sqrt(REM_ACCURACY));
float u0 = approx_parabola_inv_integral(params.a0);
float u2 = approx_parabola_inv_integral(params.a2);
float uscale = 1.0 / (u2 - u0);
float target = float(n_out) * v_step;
while (n_out == n || target < val_sum + params.val) {
vec2 p1;
if (n_out == n) {
p1 = cubic.p3;
} else {
float u = (target - val_sum) / params.val;
float a = mix(params.a0, params.a2, u);
float au = approx_parabola_inv_integral(a);
float t = (au - u0) * uscale;
p1 = eval_quad(qp0, qp1, qp2, t);
}
// Output line segment
// Bounding box of element in pixel coordinates.
float xmin = min(p0.x, p1.x) - cubic.stroke.x;
float xmax = max(p0.x, p1.x) + cubic.stroke.x;
float ymin = min(p0.y, p1.y) - cubic.stroke.y;
float ymax = max(p0.y, p1.y) + cubic.stroke.y;
float dx = p1.x - p0.x;
float dy = p1.y - p0.y;
// Set up for per-scanline coverage formula, below.
float invslope = abs(dy) < 1e-9 ? 1e9 : dx / dy;
float c = (cubic.stroke.x + abs(invslope) * (0.5 * float(TILE_HEIGHT_PX) + cubic.stroke.y)) * SX;
float b = invslope; // Note: assumes square tiles, otherwise scale.
float a = (p0.x - (p0.y - 0.5 * float(TILE_HEIGHT_PX)) * b) * SX;
int x0 = int(floor(xmin * SX));
int x1 = int(floor(xmax * SX) + 1);
int y0 = int(floor(ymin * SY));
int y1 = int(floor(ymax * SY) + 1);
x0 = clamp(x0, bbox.x, bbox.z);
y0 = clamp(y0, bbox.y, bbox.w);
x1 = clamp(x1, bbox.x, bbox.z);
y1 = clamp(y1, bbox.y, bbox.w);
float xc = a + b * float(y0);
int stride = bbox.z - bbox.x;
int base = (y0 - bbox.y) * stride - bbox.x;
// TODO: can be tighter, use c to bound width
uint n_tile_alloc = uint((x1 - x0) * (y1 - y0));
// Consider using subgroups to aggregate atomic add.
MallocResult tile_alloc = malloc(n_tile_alloc * TileSeg_size);
if (tile_alloc.failed || !mem_ok) {
return;
}
uint tile_offset = tile_alloc.alloc.offset;
TileSeg tile_seg;
int xray = int(floor(p0.x*SX));
int last_xray = int(floor(p1.x*SX));
if (p0.y > p1.y) {
int tmp = xray;
xray = last_xray;
last_xray = tmp;
}
for (int y = y0; y < y1; y++) {
float tile_y0 = float(y * TILE_HEIGHT_PX);
int xbackdrop = max(xray + 1, bbox.x);
if (!is_stroke && min(p0.y, p1.y) < tile_y0 && xbackdrop < bbox.z) {
int backdrop = p1.y < p0.y ? 1 : -1;
TileRef tile_ref = Tile_index(path.tiles, uint(base + xbackdrop));
uint tile_el = tile_ref.offset >> 2;
if (touch_mem(path_alloc, tile_el + 1)) {
atomicAdd(memory[tile_el + 1], backdrop);
}
}
// next_xray is the xray for the next scanline; the line segment intersects
// all tiles between xray and next_xray.
int next_xray = last_xray;
if (y < y1 - 1) {
float tile_y1 = float((y + 1) * TILE_HEIGHT_PX);
float x_edge = mix(p0.x, p1.x, (tile_y1 - p0.y) / dy);
next_xray = int(floor(x_edge*SX));
}
int min_xray = min(xray, next_xray);
int max_xray = max(xray, next_xray);
int xx0 = min(int(floor(xc - c)), min_xray);
int xx1 = max(int(ceil(xc + c)), max_xray + 1);
xx0 = clamp(xx0, x0, x1);
xx1 = clamp(xx1, x0, x1);
for (int x = xx0; x < xx1; x++) {
float tile_x0 = float(x * TILE_WIDTH_PX);
TileRef tile_ref = Tile_index(TileRef(path.tiles.offset), uint(base + x));
uint tile_el = tile_ref.offset >> 2;
uint old = 0;
if (touch_mem(path_alloc, tile_el)) {
old = atomicExchange(memory[tile_el], tile_offset);
}
tile_seg.origin = p0;
tile_seg.vector = p1 - p0;
float y_edge = 0.0;
if (!is_stroke) {
y_edge = mix(p0.y, p1.y, (tile_x0 - p0.x) / dx);
if (min(p0.x, p1.x) < tile_x0) {
vec2 p = vec2(tile_x0, y_edge);
if (p0.x > p1.x) {
tile_seg.vector = p - p0;
} else {
tile_seg.origin = p;
tile_seg.vector = p1 - p;
}
// kernel4 uses sign(vector.x) for the sign of the intersection backdrop.
// Nudge zeroes towards the intended sign.
if (tile_seg.vector.x == 0) {
tile_seg.vector.x = sign(p1.x - p0.x)*1e-9;
}
}
if (x <= min_xray || max_xray < x) {
// Reject inconsistent intersections.
y_edge = 1e9;
}
}
tile_seg.y_edge = y_edge;
tile_seg.next.offset = old;
TileSeg_write(tile_alloc.alloc, TileSegRef(tile_offset), tile_seg);
tile_offset += TileSeg_size;
}
xc += b;
base += stride;
xray = next_xray;
}
n_out += 1;
target += v_step;
p0 = p1;
}
val_sum += params.val;
qp0 = qp2;
}
break;
}
}