vello/shader/pathseg.wgsl
Chad Brokaw b103a55301 rework radial gradients
Adds full support for COLRv1 radial gradients based on the two-point conical gradient algorithm at https://skia.org/docs/dev/design/conical/

Also adds robustness to degenerate cases in gradient encoding:
* Radial where p0 == p1 && r0 == r1 renders transparent solid
* Empty stops render as transparent solid
* Single stop renders as solid
2023-05-09 18:09:53 -04:00

194 lines
6.5 KiB
GLSL

// SPDX-License-Identifier: Apache-2.0 OR MIT OR Unlicense
// Path segment decoding for the full case.
// In the simple case, path segments are decoded as part of the coarse
// path rendering stage. In the full case, they are separated, as the
// decoding process also generates bounding boxes, and those in turn are
// used for tile allocation and clipping; actual coarse path rasterization
// can't proceed until those are complete.
// There's some duplication of the decoding code but we won't worry about
// that just now. Perhaps it could be factored more nicely later.
#import config
#import pathtag
#import cubic
#import transform
@group(0) @binding(0)
var<uniform> config: Config;
@group(0) @binding(1)
var<storage> scene: array<u32>;
@group(0) @binding(2)
var<storage> tag_monoids: array<TagMonoid>;
struct AtomicPathBbox {
x0: atomic<i32>,
y0: atomic<i32>,
x1: atomic<i32>,
y1: atomic<i32>,
linewidth: f32,
trans_ix: u32,
}
@group(0) @binding(3)
var<storage, read_write> path_bboxes: array<AtomicPathBbox>;
@group(0) @binding(4)
var<storage, read_write> cubics: array<Cubic>;
// Monoid is yagni, for future optimization
// struct BboxMonoid {
// bbox: vec4<f32>,
// flags: u32,
// }
// let FLAG_RESET_BBOX = 1u;
// let FLAG_SET_BBOX = 2u;
// fn combine_bbox_monoid(a: BboxMonoid, b: BboxMonoid) -> BboxMonoid {
// var c: BboxMonoid;
// c.bbox = b.bbox;
// // TODO: previous-me thought this should be gated on b & SET_BBOX == false also
// if (a.flags & FLAG_RESET_BBOX) == 0u && b.bbox.z <= b.bbox.x && b.bbox.w <= b.bbox.y {
// c.bbox = a.bbox;
// } else if (a.flags & FLAG_RESET_BBOX) == 0u && (b.flags & FLAG_SET_BBOX) == 0u ||
// (a.bbox.z > a.bbox.x || a.bbox.w > a.bbox.y)
// {
// c.bbox = vec4<f32>(min(a.bbox.xy, c.bbox.xy), max(a.bbox.xw, c.bbox.zw));
// }
// c.flags = (a.flags & FLAG_SET_BBOX) | b.flags;
// c.flags |= (a.flags & FLAG_RESET_BBOX) << 1u;
// return c;
// }
// fn bbox_monoid_identity() -> BboxMonoid {
// return BboxMonoid();
// }
var<private> pathdata_base: u32;
fn read_f32_point(ix: u32) -> vec2<f32> {
let x = bitcast<f32>(scene[pathdata_base + ix]);
let y = bitcast<f32>(scene[pathdata_base + ix + 1u]);
return vec2(x, y);
}
fn read_i16_point(ix: u32) -> vec2<f32> {
let raw = scene[pathdata_base + ix];
let x = f32(i32(raw << 16u) >> 16u);
let y = f32(i32(raw) >> 16u);
return vec2(x, y);
}
fn read_transform(transform_base: u32, ix: u32) -> Transform {
let base = transform_base + ix * 6u;
let c0 = bitcast<f32>(scene[base]);
let c1 = bitcast<f32>(scene[base + 1u]);
let c2 = bitcast<f32>(scene[base + 2u]);
let c3 = bitcast<f32>(scene[base + 3u]);
let c4 = bitcast<f32>(scene[base + 4u]);
let c5 = bitcast<f32>(scene[base + 5u]);
let matrx = vec4(c0, c1, c2, c3);
let translate = vec2(c4, c5);
return Transform(matrx, translate);
}
fn round_down(x: f32) -> i32 {
return i32(floor(x));
}
fn round_up(x: f32) -> i32 {
return i32(ceil(x));
}
@compute @workgroup_size(256)
fn main(
@builtin(global_invocation_id) global_id: vec3<u32>,
@builtin(local_invocation_id) local_id: vec3<u32>,
) {
let ix = global_id.x;
let tag_word = scene[config.pathtag_base + (ix >> 2u)];
pathdata_base = config.pathdata_base;
let shift = (ix & 3u) * 8u;
var tm = reduce_tag(tag_word & ((1u << shift) - 1u));
tm = combine_tag_monoid(tag_monoids[ix >> 2u], tm);
var tag_byte = (tag_word >> shift) & 0xffu;
let out = &path_bboxes[tm.path_ix];
let linewidth = bitcast<f32>(scene[config.linewidth_base + tm.linewidth_ix]);
if (tag_byte & PATH_TAG_PATH) != 0u {
(*out).linewidth = linewidth;
(*out).trans_ix = tm.trans_ix;
}
// Decode path data
let seg_type = tag_byte & PATH_TAG_SEG_TYPE;
if seg_type != 0u {
var p0: vec2<f32>;
var p1: vec2<f32>;
var p2: vec2<f32>;
var p3: vec2<f32>;
if (tag_byte & PATH_TAG_F32) != 0u {
p0 = read_f32_point(tm.pathseg_offset);
p1 = read_f32_point(tm.pathseg_offset + 2u);
if seg_type >= PATH_TAG_QUADTO {
p2 = read_f32_point(tm.pathseg_offset + 4u);
if seg_type == PATH_TAG_CUBICTO {
p3 = read_f32_point(tm.pathseg_offset + 6u);
}
}
} else {
p0 = read_i16_point(tm.pathseg_offset);
p1 = read_i16_point(tm.pathseg_offset + 1u);
if seg_type >= PATH_TAG_QUADTO {
p2 = read_i16_point(tm.pathseg_offset + 2u);
if seg_type == PATH_TAG_CUBICTO {
p3 = read_i16_point(tm.pathseg_offset + 3u);
}
}
}
let transform = read_transform(config.transform_base, tm.trans_ix);
p0 = transform_apply(transform, p0);
p1 = transform_apply(transform, p1);
var bbox = vec4(min(p0, p1), max(p0, p1));
// Degree-raise
if seg_type == PATH_TAG_LINETO {
p3 = p1;
p2 = mix(p3, p0, 1.0 / 3.0);
p1 = mix(p0, p3, 1.0 / 3.0);
} else if seg_type >= PATH_TAG_QUADTO {
p2 = transform_apply(transform, p2);
bbox = vec4(min(bbox.xy, p2), max(bbox.zw, p2));
if seg_type == PATH_TAG_CUBICTO {
p3 = transform_apply(transform, p3);
bbox = vec4(min(bbox.xy, p3), max(bbox.zw, p3));
} else {
p3 = p2;
p2 = mix(p1, p2, 1.0 / 3.0);
p1 = mix(p1, p0, 1.0 / 3.0);
}
}
var stroke = vec2(0.0, 0.0);
if linewidth >= 0.0 {
// See https://www.iquilezles.org/www/articles/ellipses/ellipses.htm
// This is the correct bounding box, but we're not handling rendering
// in the isotropic case, so it may mismatch.
stroke = 0.5 * linewidth * vec2(length(transform.matrx.xz), length(transform.matrx.yw));
bbox += vec4(-stroke, stroke);
}
let flags = u32(linewidth >= 0.0);
cubics[global_id.x] = Cubic(p0, p1, p2, p3, stroke, tm.path_ix, flags);
// Update bounding box using atomics only. Computing a monoid is a
// potential future optimization.
if bbox.z > bbox.x || bbox.w > bbox.y {
atomicMin(&(*out).x0, round_down(bbox.x));
atomicMin(&(*out).y0, round_down(bbox.y));
atomicMax(&(*out).x1, round_up(bbox.z));
atomicMax(&(*out).y1, round_up(bbox.w));
}
}
}