mirror of
https://github.com/italicsjenga/vello.git
synced 2025-01-10 20:51:29 +11:00
29cfb8b63e
The finite precision of floating point computations can lead the coarse renderer into inconsistent tile intersections, which implies impossible line segments such as lines with gaps or double intersections. The winding number algorithm is sensitive to these errors which show up as incorrectly filled paths. This change forces all intersections to be consistent. First, the floating point top edge intersection test is removed; top edge intersections are completely determined by left edge intersections. Then, left edge intersections are inserted from the tile with the last top edge intersection. The next top edge is then fixed to be the last tile with a left edge intersection. More details in the patch comments. Fixes #23 Signed-off-by: Elias Naur <mail@eliasnaur.com>
278 lines
11 KiB
Plaintext
278 lines
11 KiB
Plaintext
// Coarse rasterization of path segments.
|
|
|
|
// Allocation and initialization of tiles for paths.
|
|
|
|
#version 450
|
|
#extension GL_GOOGLE_include_directive : enable
|
|
|
|
#include "setup.h"
|
|
|
|
#define LG_COARSE_WG 5
|
|
#define COARSE_WG (1 << LG_COARSE_WG)
|
|
|
|
layout(local_size_x = COARSE_WG, local_size_y = 1) in;
|
|
|
|
layout(set = 0, binding = 0) buffer PathSegBuf {
|
|
uint[] pathseg;
|
|
};
|
|
|
|
layout(set = 0, binding = 1) buffer AllocBuf {
|
|
uint n_paths;
|
|
uint n_pathseg;
|
|
uint alloc;
|
|
};
|
|
|
|
layout(set = 0, binding = 2) buffer TileBuf {
|
|
uint[] tile;
|
|
};
|
|
|
|
#include "pathseg.h"
|
|
#include "tile.h"
|
|
|
|
// scale factors useful for converting coordinates to tiles
|
|
#define SX (1.0 / float(TILE_WIDTH_PX))
|
|
#define SY (1.0 / float(TILE_HEIGHT_PX))
|
|
|
|
#define ACCURACY 0.25
|
|
#define Q_ACCURACY (ACCURACY * 0.1)
|
|
#define REM_ACCURACY (ACCURACY - Q_ACCURACY)
|
|
#define MAX_HYPOT2 (432.0 * Q_ACCURACY * Q_ACCURACY)
|
|
|
|
vec2 eval_quad(vec2 p0, vec2 p1, vec2 p2, float t) {
|
|
float mt = 1.0 - t;
|
|
return p0 * (mt * mt) + (p1 * (mt * 2.0) + p2 * t) * t;
|
|
}
|
|
|
|
vec2 eval_cubic(vec2 p0, vec2 p1, vec2 p2, vec2 p3, float t) {
|
|
float mt = 1.0 - t;
|
|
return p0 * (mt * mt * mt) + (p1 * (mt * mt * 3.0) + (p2 * (mt * 3.0) + p3 * t) * t) * t;
|
|
}
|
|
|
|
struct SubdivResult {
|
|
float val;
|
|
float a0;
|
|
float a2;
|
|
};
|
|
|
|
/// An approximation to $\int (1 + 4x^2) ^ -0.25 dx$
|
|
///
|
|
/// This is used for flattening curves.
|
|
#define D 0.67
|
|
float approx_parabola_integral(float x) {
|
|
return x * inversesqrt(sqrt(1.0 - D + (D * D * D * D + 0.25 * x * x)));
|
|
}
|
|
|
|
/// An approximation to the inverse parabola integral.
|
|
#define B 0.39
|
|
float approx_parabola_inv_integral(float x) {
|
|
return x * sqrt(1.0 - B + (B * B + 0.25 * x * x));
|
|
}
|
|
|
|
SubdivResult estimate_subdiv(vec2 p0, vec2 p1, vec2 p2, float sqrt_tol) {
|
|
vec2 d01 = p1 - p0;
|
|
vec2 d12 = p2 - p1;
|
|
vec2 dd = d01 - d12;
|
|
float cross = (p2.x - p0.x) * dd.y - (p2.y - p0.y) * dd.x;
|
|
float x0 = (d01.x * dd.x + d01.y * dd.y) / cross;
|
|
float x2 = (d12.x * dd.x + d12.y * dd.y) / cross;
|
|
float scale = abs(cross / (length(dd) * (x2 - x0)));
|
|
|
|
float a0 = approx_parabola_integral(x0);
|
|
float a2 = approx_parabola_integral(x2);
|
|
float val = 0.0;
|
|
if (scale < 1e9) {
|
|
float da = abs(a2 - a0);
|
|
float sqrt_scale = sqrt(scale);
|
|
if (sign(x0) == sign(x2)) {
|
|
val = da * sqrt_scale;
|
|
} else {
|
|
float xmin = sqrt_tol / sqrt_scale;
|
|
val = sqrt_tol * da / approx_parabola_integral(xmin);
|
|
}
|
|
}
|
|
return SubdivResult(val, a0, a2);
|
|
}
|
|
|
|
void main() {
|
|
uint element_ix = gl_GlobalInvocationID.x;
|
|
PathSegRef ref = PathSegRef(element_ix * PathSeg_size);
|
|
|
|
uint tag = PathSeg_Nop;
|
|
if (element_ix < n_pathseg) {
|
|
tag = PathSeg_tag(ref);
|
|
}
|
|
switch (tag) {
|
|
case PathSeg_FillCubic:
|
|
case PathSeg_StrokeCubic:
|
|
PathStrokeCubic cubic = PathSeg_StrokeCubic_read(ref);
|
|
vec2 err_v = 3.0 * (cubic.p2 - cubic.p1) + cubic.p0 - cubic.p3;
|
|
float err = err_v.x * err_v.x + err_v.y * err_v.y;
|
|
// The number of quadratics.
|
|
uint n_quads = max(uint(ceil(pow(err * (1.0 / MAX_HYPOT2), 1.0 / 6.0))), 1);
|
|
// Iterate over quadratics and tote up the estimated number of segments.
|
|
float val = 0.0;
|
|
vec2 qp0 = cubic.p0;
|
|
float step = 1.0 / float(n_quads);
|
|
for (uint i = 0; i < n_quads; i++) {
|
|
float t = float(i + 1) * step;
|
|
vec2 qp2 = eval_cubic(cubic.p0, cubic.p1, cubic.p2, cubic.p3, t);
|
|
vec2 qp1 = eval_cubic(cubic.p0, cubic.p1, cubic.p2, cubic.p3, t - 0.5 * step);
|
|
qp1 = 2.0 * qp1 - 0.5 * (qp0 + qp2);
|
|
SubdivResult params = estimate_subdiv(qp0, qp1, qp2, sqrt(REM_ACCURACY));
|
|
val += params.val;
|
|
|
|
qp0 = qp2;
|
|
}
|
|
uint n = max(uint(ceil(val * 0.5 / sqrt(REM_ACCURACY))), 1);
|
|
|
|
uint path_ix = cubic.path_ix;
|
|
Path path = Path_read(PathRef(path_ix * Path_size));
|
|
ivec4 bbox = ivec4(path.bbox);
|
|
vec2 p0 = cubic.p0;
|
|
qp0 = cubic.p0;
|
|
float v_step = val / float(n);
|
|
int n_out = 1;
|
|
float val_sum = 0.0;
|
|
for (uint i = 0; i < n_quads; i++) {
|
|
float t = float(i + 1) * step;
|
|
vec2 qp2 = eval_cubic(cubic.p0, cubic.p1, cubic.p2, cubic.p3, t);
|
|
vec2 qp1 = eval_cubic(cubic.p0, cubic.p1, cubic.p2, cubic.p3, t - 0.5 * step);
|
|
qp1 = 2.0 * qp1 - 0.5 * (qp0 + qp2);
|
|
SubdivResult params = estimate_subdiv(qp0, qp1, qp2, sqrt(REM_ACCURACY));
|
|
float u0 = approx_parabola_inv_integral(params.a0);
|
|
float u2 = approx_parabola_inv_integral(params.a2);
|
|
float uscale = 1.0 / (u2 - u0);
|
|
float target = float(n_out) * v_step;
|
|
while (n_out == n || target < val_sum + params.val) {
|
|
vec2 p1;
|
|
if (n_out == n) {
|
|
p1 = cubic.p3;
|
|
} else {
|
|
float u = (target - val_sum) / params.val;
|
|
float a = mix(params.a0, params.a2, u);
|
|
float au = approx_parabola_inv_integral(a);
|
|
float t = (au - u0) * uscale;
|
|
p1 = eval_quad(qp0, qp1, qp2, t);
|
|
}
|
|
|
|
// Output line segment
|
|
|
|
// Bounding box of element in pixel coordinates.
|
|
float xmin = min(p0.x, p1.x) - cubic.stroke.x;
|
|
float xmax = max(p0.x, p1.x) + cubic.stroke.x;
|
|
float ymin = min(p0.y, p1.y) - cubic.stroke.y;
|
|
float ymax = max(p0.y, p1.y) + cubic.stroke.y;
|
|
float dx = p1.x - p0.x;
|
|
float dy = p1.y - p0.y;
|
|
// Set up for per-scanline coverage formula, below.
|
|
float invslope = abs(dy) < 1e-9 ? 1e9 : dx / dy;
|
|
float c = (cubic.stroke.x + abs(invslope) * (0.5 * float(TILE_HEIGHT_PX) + cubic.stroke.y)) * SX;
|
|
float b = invslope; // Note: assumes square tiles, otherwise scale.
|
|
float a = (p0.x - (p0.y - 0.5 * float(TILE_HEIGHT_PX)) * b) * SX;
|
|
|
|
int x0 = int(floor(xmin * SX));
|
|
int x1 = int(floor(xmax * SX) + 1);
|
|
int y0 = int(floor(ymin * SY));
|
|
int y1 = int(floor(ymax * SY) + 1);
|
|
|
|
x0 = clamp(x0, bbox.x, bbox.z);
|
|
y0 = clamp(y0, bbox.y, bbox.w);
|
|
x1 = clamp(x1, bbox.x, bbox.z);
|
|
y1 = clamp(y1, bbox.y, bbox.w);
|
|
float xc = a + b * float(y0);
|
|
int stride = bbox.z - bbox.x;
|
|
int base = (y0 - bbox.y) * stride - bbox.x;
|
|
// TODO: can be tighter, use c to bound width
|
|
uint n_tile_alloc = uint((x1 - x0) * (y1 - y0));
|
|
// Consider using subgroups to aggregate atomic add.
|
|
uint tile_offset = atomicAdd(alloc, n_tile_alloc * TileSeg_size);
|
|
TileSeg tile_seg;
|
|
|
|
int xray = int(floor(p0.x*SX));
|
|
int last_xray = int(floor(p1.x*SX));
|
|
if (p0.y > p1.y) {
|
|
int tmp = xray;
|
|
xray = last_xray;
|
|
last_xray = tmp;
|
|
}
|
|
for (int y = y0; y < y1; y++) {
|
|
int xbackdrop = max(xray + 1, bbox.x);
|
|
if (tag == PathSeg_FillCubic && y > y0 && xbackdrop < bbox.z) {
|
|
int backdrop = p1.y < p0.y ? 1 : -1;
|
|
TileRef tile_ref = Tile_index(path.tiles, uint(base + xbackdrop));
|
|
uint tile_el = tile_ref.offset >> 2;
|
|
atomicAdd(tile[tile_el + 1], backdrop);
|
|
}
|
|
|
|
int xx0 = clamp(int(floor(xc - c)), x0, x1);
|
|
int xx1 = clamp(int(ceil(xc + c)), x0, x1);
|
|
xx1 = max(xx1, xray + 1);
|
|
|
|
// next_xray is the xray for the next scanline; it is derived
|
|
// by left edge intersections computed below.
|
|
int next_xray = xray;
|
|
for (int x = xx0; x < xx1; x++) {
|
|
float tile_x0 = float(x * TILE_WIDTH_PX);
|
|
TileRef tile_ref = Tile_index(path.tiles, uint(base + x));
|
|
uint tile_el = tile_ref.offset >> 2;
|
|
uint old = atomicExchange(tile[tile_el], tile_offset);
|
|
tile_seg.origin = p0;
|
|
tile_seg.vector = p1 - p0;
|
|
float y_edge = 0.0;
|
|
if (tag == PathSeg_FillCubic) {
|
|
float tile_y0 = float(y * TILE_HEIGHT_PX);
|
|
y_edge = mix(p0.y, p1.y, (tile_x0 - p0.x) / dx);
|
|
if (min(p0.x, p1.x) < tile_x0 && y_edge >= tile_y0 && y_edge < tile_y0 + TILE_HEIGHT_PX) {
|
|
// Left edge intersection.
|
|
vec2 p = vec2(tile_x0, y_edge);
|
|
if (p0.x > p1.x) {
|
|
tile_seg.vector = p - p0;
|
|
} else {
|
|
tile_seg.origin = p;
|
|
tile_seg.vector = p1 - p;
|
|
}
|
|
// kernel4 uses sign(vector.x) for the sign of the intersection backdrop.
|
|
// Nudge zeroes towards the intended sign.
|
|
if (tile_seg.vector.x == 0) {
|
|
tile_seg.vector.x += sign(p1.x - p0.x)*1e-9;
|
|
}
|
|
// Move next_xray consistently with previous intersections.
|
|
if (x > next_xray && next_xray >= xray) {
|
|
next_xray = x;
|
|
} else if (x <= next_xray && next_xray <= xray) {
|
|
next_xray = x - 1;
|
|
}
|
|
}
|
|
// Force last xray on the last scanline for consistency with later
|
|
// line segments.
|
|
if (y == y1 - 1) {
|
|
next_xray = last_xray;
|
|
}
|
|
// Drop inconsistent intersections.
|
|
if (x <= min(xray, next_xray) || max(xray, next_xray) < x) {
|
|
y_edge = 1e9;
|
|
}
|
|
}
|
|
tile_seg.y_edge = y_edge;
|
|
tile_seg.next.offset = old;
|
|
TileSeg_write(TileSegRef(tile_offset), tile_seg);
|
|
tile_offset += TileSeg_size;
|
|
}
|
|
xc += b;
|
|
base += stride;
|
|
xray = next_xray;
|
|
}
|
|
|
|
n_out += 1;
|
|
target += v_step;
|
|
p0 = p1;
|
|
}
|
|
val_sum += params.val;
|
|
|
|
qp0 = qp2;
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|