vello/piet-gpu/shader/elements.comp
Elias Naur 039cfcf0de piet-gpu/shader: treat memoryBarrierBuffer as a control barrier
memoryBarrierBuffer is mapped to the threadgroup_barrier function in
Metal, which is a control barrier that must be executed by all threads
(or none). This change establishes that property for the two memory
barriers we have.

While here, remove ENABLE_IMAGE_INDICES completely; it was disabled in
an earlier change.

Signed-off-by: Elias Naur <mail@eliasnaur.com>
2021-08-20 20:41:35 +02:00

440 lines
17 KiB
GLSL

// SPDX-License-Identifier: Apache-2.0 OR MIT OR Unlicense
// The element processing stage, first in the pipeline.
//
// This stage is primarily about applying transforms and computing bounding
// boxes. It is organized as a scan over the input elements, producing
// annotated output elements.
#version 450
#extension GL_GOOGLE_include_directive : enable
#include "mem.h"
#include "setup.h"
#define N_ROWS 4
#define WG_SIZE 32
#define LG_WG_SIZE 5
#define PARTITION_SIZE (WG_SIZE * N_ROWS)
layout(local_size_x = WG_SIZE, local_size_y = 1) in;
layout(set = 0, binding = 1) readonly buffer ConfigBuf {
Config conf;
};
layout(set = 0, binding = 2) readonly buffer SceneBuf {
uint[] scene;
};
// It would be better to use the Vulkan memory model than
// "volatile" but shooting for compatibility here rather
// than doing things right.
layout(set = 0, binding = 3) volatile buffer StateBuf {
uint part_counter;
uint[] state;
};
#include "scene.h"
#include "state.h"
#include "annotated.h"
#include "pathseg.h"
#include "tile.h"
#define StateBuf_stride (4 + 2 * State_size)
StateRef state_aggregate_ref(uint partition_ix) {
return StateRef(4 + partition_ix * StateBuf_stride);
}
StateRef state_prefix_ref(uint partition_ix) {
return StateRef(4 + partition_ix * StateBuf_stride + State_size);
}
uint state_flag_index(uint partition_ix) {
return partition_ix * (StateBuf_stride / 4);
}
// These correspond to X, A, P respectively in the prefix sum paper.
#define FLAG_NOT_READY 0
#define FLAG_AGGREGATE_READY 1
#define FLAG_PREFIX_READY 2
#define FLAG_SET_LINEWIDTH 1
#define FLAG_SET_BBOX 2
#define FLAG_RESET_BBOX 4
#define FLAG_SET_FILL_MODE 8
// Fill modes take up the next bit. Non-zero fill is 0, stroke is 1.
#define LG_FILL_MODE 4
#define FILL_MODE_BITS 1
#define FILL_MODE_MASK (FILL_MODE_BITS << LG_FILL_MODE)
// This is almost like a monoid (the interaction between transformation and
// bounding boxes is approximate)
State combine_state(State a, State b) {
State c;
c.bbox.x = min(a.mat.x * b.bbox.x, a.mat.x * b.bbox.z) + min(a.mat.z * b.bbox.y, a.mat.z * b.bbox.w) + a.translate.x;
c.bbox.y = min(a.mat.y * b.bbox.x, a.mat.y * b.bbox.z) + min(a.mat.w * b.bbox.y, a.mat.w * b.bbox.w) + a.translate.y;
c.bbox.z = max(a.mat.x * b.bbox.x, a.mat.x * b.bbox.z) + max(a.mat.z * b.bbox.y, a.mat.z * b.bbox.w) + a.translate.x;
c.bbox.w = max(a.mat.y * b.bbox.x, a.mat.y * b.bbox.z) + max(a.mat.w * b.bbox.y, a.mat.w * b.bbox.w) + a.translate.y;
if ((a.flags & FLAG_RESET_BBOX) == 0 && b.bbox.z <= b.bbox.x && b.bbox.w <= b.bbox.y) {
c.bbox = a.bbox;
} else if ((a.flags & FLAG_RESET_BBOX) == 0 && (b.flags & FLAG_SET_BBOX) == 0 &&
(a.bbox.z > a.bbox.x || a.bbox.w > a.bbox.y))
{
c.bbox.xy = min(a.bbox.xy, c.bbox.xy);
c.bbox.zw = max(a.bbox.zw, c.bbox.zw);
}
// It would be more concise to cast to matrix types; ah well.
c.mat.x = a.mat.x * b.mat.x + a.mat.z * b.mat.y;
c.mat.y = a.mat.y * b.mat.x + a.mat.w * b.mat.y;
c.mat.z = a.mat.x * b.mat.z + a.mat.z * b.mat.w;
c.mat.w = a.mat.y * b.mat.z + a.mat.w * b.mat.w;
c.translate.x = a.mat.x * b.translate.x + a.mat.z * b.translate.y + a.translate.x;
c.translate.y = a.mat.y * b.translate.x + a.mat.w * b.translate.y + a.translate.y;
c.linewidth = (b.flags & FLAG_SET_LINEWIDTH) == 0 ? a.linewidth : b.linewidth;
c.flags = (a.flags & (FLAG_SET_LINEWIDTH | FLAG_SET_BBOX | FLAG_SET_FILL_MODE)) | b.flags;
c.flags |= (a.flags & FLAG_RESET_BBOX) >> 1;
uint fill_mode = (b.flags & FLAG_SET_FILL_MODE) == 0 ? a.flags : b.flags;
fill_mode &= FILL_MODE_MASK;
c.flags = (c.flags & ~FILL_MODE_MASK) | fill_mode;
c.path_count = a.path_count + b.path_count;
c.pathseg_count = a.pathseg_count + b.pathseg_count;
c.trans_count = a.trans_count + b.trans_count;
return c;
}
State map_element(ElementRef ref) {
// TODO: it would *probably* be more efficient to make the memory read patterns less
// divergent, though it would be more wasted memory.
uint tag = Element_tag(ref).tag;
State c;
c.bbox = vec4(0.0, 0.0, 0.0, 0.0);
c.mat = vec4(1.0, 0.0, 0.0, 1.0);
c.translate = vec2(0.0, 0.0);
c.linewidth = 1.0; // TODO should be 0.0
c.flags = 0;
c.path_count = 0;
c.pathseg_count = 0;
c.trans_count = 0;
switch (tag) {
case Element_Line:
LineSeg line = Element_Line_read(ref);
c.bbox.xy = min(line.p0, line.p1);
c.bbox.zw = max(line.p0, line.p1);
c.pathseg_count = 1;
break;
case Element_Quad:
QuadSeg quad = Element_Quad_read(ref);
c.bbox.xy = min(min(quad.p0, quad.p1), quad.p2);
c.bbox.zw = max(max(quad.p0, quad.p1), quad.p2);
c.pathseg_count = 1;
break;
case Element_Cubic:
CubicSeg cubic = Element_Cubic_read(ref);
c.bbox.xy = min(min(cubic.p0, cubic.p1), min(cubic.p2, cubic.p3));
c.bbox.zw = max(max(cubic.p0, cubic.p1), max(cubic.p2, cubic.p3));
c.pathseg_count = 1;
break;
case Element_FillColor:
case Element_FillLinGradient:
case Element_FillImage:
case Element_BeginClip:
c.flags = FLAG_RESET_BBOX;
c.path_count = 1;
break;
case Element_EndClip:
c.path_count = 1;
break;
case Element_SetLineWidth:
SetLineWidth lw = Element_SetLineWidth_read(ref);
c.linewidth = lw.width;
c.flags = FLAG_SET_LINEWIDTH;
break;
case Element_Transform:
Transform t = Element_Transform_read(ref);
c.mat = t.mat;
c.translate = t.translate;
c.trans_count = 1;
break;
case Element_SetFillMode:
SetFillMode fm = Element_SetFillMode_read(ref);
c.flags = FLAG_SET_FILL_MODE | (fm.fill_mode << LG_FILL_MODE);
break;
}
return c;
}
// Get the bounding box of a circle transformed by the matrix into an ellipse.
vec2 get_linewidth(State st) {
// See https://www.iquilezles.org/www/articles/ellipses/ellipses.htm
return 0.5 * st.linewidth * vec2(length(st.mat.xz), length(st.mat.yw));
}
shared State sh_state[WG_SIZE];
shared uint sh_part_ix;
shared State sh_prefix;
void main() {
State th_state[N_ROWS];
// Determine partition to process by atomic counter (described in Section
// 4.4 of prefix sum paper).
if (gl_LocalInvocationID.x == 0) {
sh_part_ix = atomicAdd(part_counter, 1);
}
barrier();
uint part_ix = sh_part_ix;
uint ix = part_ix * PARTITION_SIZE + gl_LocalInvocationID.x * N_ROWS;
ElementRef ref = ElementRef(ix * Element_size);
th_state[0] = map_element(ref);
for (uint i = 1; i < N_ROWS; i++) {
// discussion question: would it be faster to load using more coherent patterns
// into thread memory? This is kinda strided.
th_state[i] = combine_state(th_state[i - 1], map_element(Element_index(ref, i)));
}
State agg = th_state[N_ROWS - 1];
sh_state[gl_LocalInvocationID.x] = agg;
for (uint i = 0; i < LG_WG_SIZE; i++) {
barrier();
if (gl_LocalInvocationID.x >= (1 << i)) {
State other = sh_state[gl_LocalInvocationID.x - (1 << i)];
agg = combine_state(other, agg);
}
barrier();
sh_state[gl_LocalInvocationID.x] = agg;
}
State exclusive;
exclusive.bbox = vec4(0.0, 0.0, 0.0, 0.0);
exclusive.mat = vec4(1.0, 0.0, 0.0, 1.0);
exclusive.translate = vec2(0.0, 0.0);
exclusive.linewidth = 1.0; //TODO should be 0.0
exclusive.flags = 0;
exclusive.path_count = 0;
exclusive.pathseg_count = 0;
exclusive.trans_count = 0;
// Publish aggregate for this partition
if (gl_LocalInvocationID.x == WG_SIZE - 1) {
// Note: with memory model, we'd want to generate the atomic store version of this.
State_write(state_aggregate_ref(part_ix), agg);
}
memoryBarrierBuffer();
if (gl_LocalInvocationID.x == WG_SIZE - 1) {
uint flag = FLAG_AGGREGATE_READY;
if (part_ix == 0) {
State_write(state_prefix_ref(part_ix), agg);
flag = FLAG_PREFIX_READY;
}
state[state_flag_index(part_ix)] = flag;
if (part_ix != 0) {
// step 4 of paper: decoupled lookback
uint look_back_ix = part_ix - 1;
State their_agg;
uint their_ix = 0;
while (true) {
flag = state[state_flag_index(look_back_ix)];
if (flag == FLAG_PREFIX_READY) {
State their_prefix = State_read(state_prefix_ref(look_back_ix));
exclusive = combine_state(their_prefix, exclusive);
break;
} else if (flag == FLAG_AGGREGATE_READY) {
their_agg = State_read(state_aggregate_ref(look_back_ix));
exclusive = combine_state(their_agg, exclusive);
look_back_ix--;
their_ix = 0;
continue;
}
// else spin
// Unfortunately there's no guarantee of forward progress of other
// workgroups, so compute a bit of the aggregate before trying again.
// In the worst case, spinning stops when the aggregate is complete.
ElementRef ref = ElementRef((look_back_ix * PARTITION_SIZE + their_ix) * Element_size);
State s = map_element(ref);
if (their_ix == 0) {
their_agg = s;
} else {
their_agg = combine_state(their_agg, s);
}
their_ix++;
if (their_ix == PARTITION_SIZE) {
exclusive = combine_state(their_agg, exclusive);
if (look_back_ix == 0) {
break;
}
look_back_ix--;
their_ix = 0;
}
}
// step 5 of paper: compute inclusive prefix
State inclusive_prefix = combine_state(exclusive, agg);
sh_prefix = exclusive;
State_write(state_prefix_ref(part_ix), inclusive_prefix);
}
}
memoryBarrierBuffer();
if (gl_LocalInvocationID.x == WG_SIZE - 1 && part_ix != 0) {
state[state_flag_index(part_ix)] = FLAG_PREFIX_READY;
}
barrier();
if (part_ix != 0) {
exclusive = sh_prefix;
}
State row = exclusive;
if (gl_LocalInvocationID.x > 0) {
State other = sh_state[gl_LocalInvocationID.x - 1];
row = combine_state(row, other);
}
for (uint i = 0; i < N_ROWS; i++) {
State st = combine_state(row, th_state[i]);
// Here we read again from the original scene. There may be
// gains to be had from stashing in shared memory or possibly
// registers (though register pressure is an issue).
ElementRef this_ref = Element_index(ref, i);
ElementTag tag = Element_tag(this_ref);
uint fill_mode = fill_mode_from_flags(st.flags >> LG_FILL_MODE);
bool is_stroke = fill_mode == MODE_STROKE;
switch (tag.tag) {
case Element_Line:
LineSeg line = Element_Line_read(this_ref);
PathCubic path_cubic;
path_cubic.p0 = line.p0;
path_cubic.p1 = mix(line.p0, line.p1, 1.0 / 3.0);
path_cubic.p2 = mix(line.p1, line.p0, 1.0 / 3.0);
path_cubic.p3 = line.p1;
path_cubic.path_ix = st.path_count;
path_cubic.trans_ix = st.trans_count;
if (is_stroke) {
path_cubic.stroke = get_linewidth(st);
} else {
path_cubic.stroke = vec2(0.0);
}
PathSegRef path_out_ref = PathSegRef(conf.pathseg_alloc.offset + (st.pathseg_count - 1) * PathSeg_size);
PathSeg_Cubic_write(conf.pathseg_alloc, path_out_ref, fill_mode, path_cubic);
break;
case Element_Quad:
QuadSeg quad = Element_Quad_read(this_ref);
path_cubic.p0 = quad.p0;
path_cubic.p1 = mix(quad.p1, quad.p0, 1.0 / 3.0);
path_cubic.p2 = mix(quad.p1, quad.p2, 1.0 / 3.0);
path_cubic.p3 = quad.p2;
path_cubic.path_ix = st.path_count;
path_cubic.trans_ix = st.trans_count;
if (is_stroke) {
path_cubic.stroke = get_linewidth(st);
} else {
path_cubic.stroke = vec2(0.0);
}
path_out_ref = PathSegRef(conf.pathseg_alloc.offset + (st.pathseg_count - 1) * PathSeg_size);
PathSeg_Cubic_write(conf.pathseg_alloc, path_out_ref, fill_mode, path_cubic);
break;
case Element_Cubic:
CubicSeg cubic = Element_Cubic_read(this_ref);
path_cubic.p0 = cubic.p0;
path_cubic.p1 = cubic.p1;
path_cubic.p2 = cubic.p2;
path_cubic.p3 = cubic.p3;
path_cubic.path_ix = st.path_count;
path_cubic.trans_ix = st.trans_count;
if (is_stroke) {
path_cubic.stroke = get_linewidth(st);
} else {
path_cubic.stroke = vec2(0.0);
}
path_out_ref = PathSegRef(conf.pathseg_alloc.offset + (st.pathseg_count - 1) * PathSeg_size);
PathSeg_Cubic_write(conf.pathseg_alloc, path_out_ref, fill_mode, path_cubic);
break;
case Element_FillColor:
FillColor fill = Element_FillColor_read(this_ref);
AnnoColor anno_fill;
anno_fill.rgba_color = fill.rgba_color;
if (is_stroke) {
vec2 lw = get_linewidth(st);
anno_fill.bbox = st.bbox + vec4(-lw, lw);
anno_fill.linewidth = st.linewidth * sqrt(abs(st.mat.x * st.mat.w - st.mat.y * st.mat.z));
} else {
anno_fill.bbox = st.bbox;
anno_fill.linewidth = 0.0;
}
AnnotatedRef out_ref = AnnotatedRef(conf.anno_alloc.offset + (st.path_count - 1) * Annotated_size);
Annotated_Color_write(conf.anno_alloc, out_ref, fill_mode, anno_fill);
break;
case Element_FillLinGradient:
FillLinGradient lin = Element_FillLinGradient_read(this_ref);
AnnoLinGradient anno_lin;
anno_lin.index = lin.index;
vec2 p0 = st.mat.xy * lin.p0.x + st.mat.zw * lin.p0.y + st.translate;
vec2 p1 = st.mat.xy * lin.p1.x + st.mat.zw * lin.p1.y + st.translate;
vec2 dxy = p1 - p0;
float scale = 1.0 / (dxy.x * dxy.x + dxy.y * dxy.y);
float line_x = dxy.x * scale;
float line_y = dxy.y * scale;
anno_lin.line_x = line_x;
anno_lin.line_y = line_y;
anno_lin.line_c = -(p0.x * line_x + p0.y * line_y);
// TODO: consider consolidating bbox calculation
if (is_stroke) {
vec2 lw = get_linewidth(st);
anno_lin.bbox = st.bbox + vec4(-lw, lw);
anno_lin.linewidth = st.linewidth * sqrt(abs(st.mat.x * st.mat.w - st.mat.y * st.mat.z));
} else {
anno_lin.bbox = st.bbox;
anno_lin.linewidth = 0.0;
}
out_ref = AnnotatedRef(conf.anno_alloc.offset + (st.path_count - 1) * Annotated_size);
Annotated_LinGradient_write(conf.anno_alloc, out_ref, fill_mode, anno_lin);
break;
case Element_FillImage:
FillImage fill_img = Element_FillImage_read(this_ref);
AnnoImage anno_img;
anno_img.index = fill_img.index;
anno_img.offset = fill_img.offset;
if (is_stroke) {
vec2 lw = get_linewidth(st);
anno_img.bbox = st.bbox + vec4(-lw, lw);
anno_img.linewidth = st.linewidth * sqrt(abs(st.mat.x * st.mat.w - st.mat.y * st.mat.z));
} else {
anno_img.bbox = st.bbox;
anno_img.linewidth = 0.0;
}
out_ref = AnnotatedRef(conf.anno_alloc.offset + (st.path_count - 1) * Annotated_size);
Annotated_Image_write(conf.anno_alloc, out_ref, fill_mode, anno_img);
break;
case Element_BeginClip:
Clip begin_clip = Element_BeginClip_read(this_ref);
AnnoBeginClip anno_begin_clip;
// This is the absolute bbox, it's been transformed during encoding.
anno_begin_clip.bbox = begin_clip.bbox;
if (is_stroke) {
vec2 lw = get_linewidth(st);
anno_begin_clip.linewidth = st.linewidth * sqrt(abs(st.mat.x * st.mat.w - st.mat.y * st.mat.z));
} else {
anno_fill.linewidth = 0.0;
}
out_ref = AnnotatedRef(conf.anno_alloc.offset + (st.path_count - 1) * Annotated_size);
Annotated_BeginClip_write(conf.anno_alloc, out_ref, fill_mode, anno_begin_clip);
break;
case Element_EndClip:
Clip end_clip = Element_EndClip_read(this_ref);
// This bbox is expected to be the same as the begin one.
AnnoEndClip anno_end_clip = AnnoEndClip(end_clip.bbox);
out_ref = AnnotatedRef(conf.anno_alloc.offset + (st.path_count - 1) * Annotated_size);
Annotated_EndClip_write(conf.anno_alloc, out_ref, anno_end_clip);
break;
case Element_Transform:
TransformSeg transform = TransformSeg(st.mat, st.translate);
TransformSegRef trans_ref = TransformSegRef(conf.trans_alloc.offset + (st.trans_count - 1) * TransformSeg_size);
TransformSeg_write(conf.trans_alloc, trans_ref, transform);
break;
}
}
}