vello/piet-gpu/shader/elements.comp
Raph Levien 343e4c3075 Binning stage
Adds a binning stage. This is a first draft, and a number of loose ends
exist.
2020-05-12 17:34:15 -07:00

229 lines
8.6 KiB
Text

// The element processing stage, first in the pipeline.
//
// This stage is primarily about applying transforms and computing bounding
// boxes. It is organized as a scan over the input elements, producing
// annotated output elements.
#version 450
#extension GL_GOOGLE_include_directive : enable
#define N_ROWS 4
#define WG_SIZE 32
#define LG_WG_SIZE 5
#define TILE_SIZE (WG_SIZE * N_ROWS)
layout(local_size_x = WG_SIZE, local_size_y = 1) in;
layout(set = 0, binding = 0) readonly buffer SceneBuf {
uint[] scene;
};
// This will be used for inter-workgroup aggregates. In the
// meantime, for development, it has been used to store the
// scan of the state objects.
layout(set = 0, binding = 1) buffer StateBuf {
uint[] state;
};
// The annotated results are stored here.
layout(set = 0, binding = 2) buffer AnnotatedBuf {
uint[] annotated;
};
#include "scene.h"
#include "state.h"
#include "annotated.h"
#define FLAG_SET_LINEWIDTH 1
#define FLAG_RESET_BBOX 2
// This is almost like a monoid (the interaction between transformation and
// bounding boxes is approximate)
State combine_state(State a, State b) {
State c;
c.bbox.x = min(a.mat.x * b.bbox.x, a.mat.x * b.bbox.z) + min(a.mat.z * b.bbox.y, a.mat.z * b.bbox.w) + a.translate.x;
c.bbox.y = min(a.mat.y * b.bbox.x, a.mat.y * b.bbox.z) + min(a.mat.w * b.bbox.y, a.mat.w * b.bbox.w) + a.translate.y;
c.bbox.z = max(a.mat.x * b.bbox.x, a.mat.x * b.bbox.z) + max(a.mat.z * b.bbox.y, a.mat.z * b.bbox.w) + a.translate.x;
c.bbox.w = max(a.mat.y * b.bbox.x, a.mat.y * b.bbox.z) + max(a.mat.w * b.bbox.y, a.mat.w * b.bbox.w) + a.translate.y;
if ((a.flags & FLAG_RESET_BBOX) == 0 && b.bbox.z <= b.bbox.x && b.bbox.w <= b.bbox.y) {
c.bbox = a.bbox;
} else if ((a.flags & FLAG_RESET_BBOX) == 0 && (a.bbox.z > a.bbox.x || a.bbox.w > a.bbox.y)) {
c.bbox.xy = min(a.bbox.xy, c.bbox.xy);
c.bbox.zw = max(a.bbox.zw, c.bbox.zw);
}
// It would be more concise to cast to matrix types; ah well.
c.mat.x = a.mat.x * b.mat.x + a.mat.z * b.mat.y;
c.mat.y = a.mat.y * b.mat.x + a.mat.w * b.mat.y;
c.mat.z = a.mat.x * b.mat.z + a.mat.z * b.mat.w;
c.mat.w = a.mat.y * b.mat.z + a.mat.w * b.mat.w;
c.translate.x = a.mat.x * b.translate.x + a.mat.z * b.translate.y + a.translate.x;
c.translate.y = a.mat.y * b.translate.x + a.mat.w * b.translate.y + a.translate.y;
c.linewidth = (b.flags & FLAG_SET_LINEWIDTH) == 0 ? a.linewidth : b.linewidth;
c.flags = a.flags | b.flags;
return c;
}
State map_element(ElementRef ref) {
// TODO: it would *probably* be more efficient to make the memory read patterns less
// divergent, though it would be more wasted memory.
uint tag = Element_tag(ref);
State c;
c.bbox = vec4(0.0, 0.0, 0.0, 0.0);
c.mat = vec4(1.0, 0.0, 0.0, 1.0);
c.translate = vec2(0.0, 0.0);
c.linewidth = 0.0;
c.flags = 0;
switch (tag) {
case Element_Line:
LineSeg line = Element_Line_read(ref);
c.bbox.xy = min(line.p0, line.p1);
c.bbox.zw = max(line.p0, line.p1);
break;
case Element_Quad:
QuadSeg quad = Element_Quad_read(ref);
c.bbox.xy = min(min(quad.p0, quad.p1), quad.p2);
c.bbox.zw = max(max(quad.p0, quad.p1), quad.p2);
break;
case Element_Cubic:
CubicSeg cubic = Element_Cubic_read(ref);
c.bbox.xy = min(min(cubic.p0, cubic.p1), min(cubic.p2, cubic.p3));
c.bbox.zw = max(max(cubic.p0, cubic.p1), max(cubic.p2, cubic.p3));
break;
case Element_Fill:
case Element_Stroke:
c.flags = FLAG_RESET_BBOX;
break;
case Element_SetLineWidth:
SetLineWidth lw = Element_SetLineWidth_read(ref);
c.linewidth = lw.width;
c.flags = FLAG_SET_LINEWIDTH;
break;
case Element_Transform:
Transform t = Element_Transform_read(ref);
c.mat = t.mat;
c.translate = t.translate;
break;
}
return c;
}
// Get the bounding box of a circle transformed by the matrix into an ellipse.
vec2 get_linewidth(State st) {
// See https://www.iquilezles.org/www/articles/ellipses/ellipses.htm
return 0.5 * st.linewidth * vec2(length(st.mat.xz), length(st.mat.yw));
}
// We should be able to use an array of structs but the NV shader compiler
// doesn't seem to like it :/
//shared State sh_state[WG_SIZE];
shared vec4 sh_mat[WG_SIZE];
shared vec2 sh_translate[WG_SIZE];
shared vec4 sh_bbox[WG_SIZE];
shared float sh_width[WG_SIZE];
shared uint sh_flags[WG_SIZE];
void main() {
State th_state[N_ROWS];
// this becomes an atomic counter
uint tile_ix = gl_WorkGroupID.x;
uint ix = tile_ix * TILE_SIZE + gl_LocalInvocationID.x * N_ROWS;
ElementRef ref = ElementRef(ix * Element_size);
th_state[0] = map_element(ref);
for (uint i = 1; i < N_ROWS; i++) {
// discussion question: would it be faster to load using more coherent patterns
// into thread memory? This is kinda strided.
th_state[i] = combine_state(th_state[i - 1], map_element(Element_index(ref, i)));
}
State agg = th_state[N_ROWS - 1];
sh_mat[gl_LocalInvocationID.x] = agg.mat;
sh_translate[gl_LocalInvocationID.x] = agg.translate;
sh_bbox[gl_LocalInvocationID.x] = agg.bbox;
sh_width[gl_LocalInvocationID.x] = agg.linewidth;
sh_flags[gl_LocalInvocationID.x] = agg.flags;
for (uint i = 0; i < LG_WG_SIZE; i++) {
barrier();
if (gl_LocalInvocationID.x >= (1 << i)) {
State other;
uint ix = gl_LocalInvocationID.x - (1 << i);
other.mat = sh_mat[ix];
other.translate = sh_translate[ix];
other.bbox = sh_bbox[ix];
other.linewidth = sh_width[ix];
other.flags = sh_flags[ix];
agg = combine_state(other, agg);
}
barrier();
sh_mat[gl_LocalInvocationID.x] = agg.mat;
sh_translate[gl_LocalInvocationID.x] = agg.translate;
sh_bbox[gl_LocalInvocationID.x] = agg.bbox;
sh_width[gl_LocalInvocationID.x] = agg.linewidth;
sh_flags[gl_LocalInvocationID.x] = agg.flags;
}
// TODO: if last invocation in wg, publish agg.
barrier();
State exclusive;
exclusive.bbox = vec4(0.0, 0.0, 0.0, 0.0);
exclusive.mat = vec4(1.0, 0.0, 0.0, 1.0);
exclusive.translate = vec2(0.0, 0.0);
exclusive.linewidth = 0.0;
exclusive.flags = 0;
// TODO: do decoupled look-back
State row = exclusive;
if (gl_LocalInvocationID.x > 0) {
uint ix = gl_LocalInvocationID.x - 1;
State other;
other.mat = sh_mat[ix];
other.translate = sh_translate[ix];
other.bbox = sh_bbox[ix];
other.linewidth = sh_width[ix];
other.flags = sh_flags[ix];
row = combine_state(row, other);
}
for (uint i = 0; i < N_ROWS; i++) {
State st = combine_state(row, th_state[i]);
// We write the state now for development purposes, but the
// actual goal is to write transformed and annotated elements.
//State_write(StateRef((ix + i) * State_size), st);
// Here we read again from the original scene. There may be
// gains to be had from stashing in shared memory or possibly
// registers (though register pressure is an issue).
ElementRef this_ref = Element_index(ref, i);
AnnotatedRef out_ref = AnnotatedRef((ix + i) * Annotated_size);
uint tag = Element_tag(this_ref);
switch (tag) {
case Element_Line:
LineSeg line = Element_Line_read(this_ref);
AnnoLineSeg anno_line;
anno_line.p0 = st.mat.xz * line.p0.x + st.mat.yw * line.p0.y + st.translate;
anno_line.p1 = st.mat.xz * line.p1.x + st.mat.yw * line.p1.y + st.translate;
anno_line.stroke = get_linewidth(st);
Annotated_Line_write(out_ref, anno_line);
break;
case Element_Stroke:
Stroke stroke = Element_Stroke_read(this_ref);
AnnoStroke anno_stroke;
anno_stroke.rgba_color = stroke.rgba_color;
vec2 lw = get_linewidth(st);
anno_stroke.bbox = st.bbox + vec4(-lw, lw);
anno_stroke.linewidth = st.linewidth * sqrt(st.mat.x * st.mat.w - st.mat.y * st.mat.z);
Annotated_Stroke_write(out_ref, anno_stroke);
break;
case Element_Fill:
Fill fill = Element_Fill_read(this_ref);
AnnoFill anno_fill;
anno_fill.rgba_color = fill.rgba_color;
anno_fill.bbox = st.bbox;
Annotated_Fill_write(out_ref, anno_fill);
break;
default:
Annotated_Nop_write(out_ref);
break;
}
}
}