vello/piet-gpu/bin/cli.rs
Raph Levien bae185efbd API reorg
Move types into the toplevel and hide implementation details. Remove
deref of hub CmdBuf to mux. Restrict public visibility of internals.

Most items have some docs, though improvements are still possible. In
particular, there should be detailed safety info.
2021-05-29 21:11:02 -07:00

305 lines
12 KiB
Rust

use std::fs::File;
use std::io::BufWriter;
use std::path::Path;
use clap::{App, Arg};
use piet_gpu_hal::{BufferUsage, Error, Instance, Session};
use piet_gpu::{render_scene, render_svg, PietGpuRenderContext, Renderer, HEIGHT, WIDTH};
#[allow(unused)]
fn dump_scene(buf: &[u8]) {
for i in 0..(buf.len() / 4) {
let mut buf_u32 = [0u8; 4];
buf_u32.copy_from_slice(&buf[i * 4..i * 4 + 4]);
println!("{:4x}: {:8x}", i * 4, u32::from_le_bytes(buf_u32));
}
}
#[allow(unused)]
fn dump_state(buf: &[u8]) {
for i in 0..(buf.len() / 48) {
let j = i * 48;
let floats = (0..11)
.map(|k| {
let mut buf_f32 = [0u8; 4];
buf_f32.copy_from_slice(&buf[j + k * 4..j + k * 4 + 4]);
f32::from_le_bytes(buf_f32)
})
.collect::<Vec<_>>();
println!(
"{}: [{} {} {} {} {} {}] ({}, {})-({} {}) {} {}",
i,
floats[0],
floats[1],
floats[2],
floats[3],
floats[4],
floats[5],
floats[6],
floats[7],
floats[8],
floats[9],
floats[10],
buf[j + 44]
);
}
}
/// Interpret the output of the binning stage, for diagnostic purposes.
#[allow(unused)]
fn trace_merge(buf: &[u32]) {
for bin in 0..256 {
println!("bin {}:", bin);
let mut starts = (0..16)
.map(|i| Some((bin * 16 + i) * 64))
.collect::<Vec<Option<usize>>>();
loop {
let min_start = starts
.iter()
.map(|st| {
st.map(|st| {
if buf[st / 4] == 0 {
!0
} else {
buf[st / 4 + 2]
}
})
.unwrap_or(!0)
})
.min()
.unwrap();
if min_start == !0 {
break;
}
let mut selected = !0;
for i in 0..16 {
if let Some(st) = starts[i] {
if buf[st / 4] != 0 && buf[st / 4 + 2] == min_start {
selected = i;
break;
}
}
}
let st = starts[selected].unwrap();
println!("selected {}, start {:x}", selected, st);
for j in 0..buf[st / 4] {
println!("{:x}", buf[st / 4 + 2 + j as usize])
}
if buf[st / 4 + 1] == 0 {
starts[selected] = None;
} else {
starts[selected] = Some(buf[st / 4 + 1] as usize);
}
}
}
}
/// Interpret the output of the coarse raster stage, for diagnostic purposes.
#[allow(unused)]
fn trace_ptcl(buf: &[u32]) {
for y in 0..96 {
for x in 0..128 {
let tile_ix = y * 128 + x;
println!("tile {} @({}, {})", tile_ix, x, y);
let mut tile_offset = tile_ix * 1024;
loop {
let tag = buf[tile_offset / 4];
match tag {
0 => break,
3 => {
let backdrop = buf[tile_offset / 4 + 2];
let rgba_color = buf[tile_offset / 4 + 3];
println!(" {:x}: fill {:x} {}", tile_offset, rgba_color, backdrop);
let mut seg_chunk = buf[tile_offset / 4 + 1] as usize;
let n = buf[seg_chunk / 4] as usize;
let segs = buf[seg_chunk / 4 + 2] as usize;
println!(" chunk @{:x}: n={}, segs @{:x}", seg_chunk, n, segs);
for i in 0..n {
let x0 = f32::from_bits(buf[segs / 4 + i * 5]);
let y0 = f32::from_bits(buf[segs / 4 + i * 5 + 1]);
let x1 = f32::from_bits(buf[segs / 4 + i * 5 + 2]);
let y1 = f32::from_bits(buf[segs / 4 + i * 5 + 3]);
let y_edge = f32::from_bits(buf[segs / 4 + i * 5 + 4]);
println!(
" ({:.3}, {:.3}) - ({:.3}, {:.3}) | {:.3}",
x0, y0, x1, y1, y_edge
);
}
loop {
seg_chunk = buf[seg_chunk / 4 + 1] as usize;
if seg_chunk == 0 {
break;
}
}
}
4 => {
let line_width = f32::from_bits(buf[tile_offset / 4 + 2]);
let rgba_color = buf[tile_offset / 4 + 3];
println!(
" {:x}: stroke {:x} {}",
tile_offset, rgba_color, line_width
);
let mut seg_chunk = buf[tile_offset / 4 + 1] as usize;
let n = buf[seg_chunk / 4] as usize;
let segs = buf[seg_chunk / 4 + 2] as usize;
println!(" chunk @{:x}: n={}, segs @{:x}", seg_chunk, n, segs);
for i in 0..n {
let x0 = f32::from_bits(buf[segs / 4 + i * 5]);
let y0 = f32::from_bits(buf[segs / 4 + i * 5 + 1]);
let x1 = f32::from_bits(buf[segs / 4 + i * 5 + 2]);
let y1 = f32::from_bits(buf[segs / 4 + i * 5 + 3]);
let y_edge = f32::from_bits(buf[segs / 4 + i * 5 + 4]);
println!(
" ({:.3}, {:.3}) - ({:.3}, {:.3}) | {:.3}",
x0, y0, x1, y1, y_edge
);
}
loop {
seg_chunk = buf[seg_chunk / 4 + 1] as usize;
if seg_chunk == 0 {
break;
}
}
}
6 => {
let backdrop = buf[tile_offset / 4 + 2];
println!(" {:x}: begin_clip {}", tile_offset, backdrop);
let mut seg_chunk = buf[tile_offset / 4 + 1] as usize;
let n = buf[seg_chunk / 4] as usize;
let segs = buf[seg_chunk / 4 + 2] as usize;
println!(" chunk @{:x}: n={}, segs @{:x}", seg_chunk, n, segs);
for i in 0..n {
let x0 = f32::from_bits(buf[segs / 4 + i * 5]);
let y0 = f32::from_bits(buf[segs / 4 + i * 5 + 1]);
let x1 = f32::from_bits(buf[segs / 4 + i * 5 + 2]);
let y1 = f32::from_bits(buf[segs / 4 + i * 5 + 3]);
let y_edge = f32::from_bits(buf[segs / 4 + i * 5 + 4]);
println!(
" ({:.3}, {:.3}) - ({:.3}, {:.3}) | {:.3}",
x0, y0, x1, y1, y_edge
);
}
loop {
seg_chunk = buf[seg_chunk / 4 + 1] as usize;
if seg_chunk == 0 {
break;
}
}
}
7 => {
let backdrop = buf[tile_offset / 4 + 1];
println!("{:x}: solid_clip {:x}", tile_offset, backdrop);
}
8 => {
println!("{:x}: end_clip", tile_offset);
}
_ => {
println!("{:x}: {}", tile_offset, tag);
}
}
if tag == 0 {
break;
}
if tag == 8 {
tile_offset = buf[tile_offset / 4 + 1] as usize;
} else {
tile_offset += 20;
}
}
}
}
}
fn main() -> Result<(), Error> {
let matches = App::new("piet-gpu test")
.arg(Arg::with_name("INPUT").index(1))
.arg(Arg::with_name("flip").short("f").long("flip"))
.arg(
Arg::with_name("scale")
.short("s")
.long("scale")
.takes_value(true),
)
.get_matches();
let (instance, _) = Instance::new(None)?;
unsafe {
let device = instance.device(None)?;
let session = Session::new(device);
let mut cmd_buf = session.cmd_buf()?;
let query_pool = session.create_query_pool(8)?;
let mut ctx = PietGpuRenderContext::new();
if let Some(input) = matches.value_of("INPUT") {
let mut scale = matches
.value_of("scale")
.map(|scale| scale.parse().unwrap())
.unwrap_or(8.0);
if matches.is_present("flip") {
scale = -scale;
}
render_svg(&mut ctx, input, scale);
} else {
render_scene(&mut ctx);
}
let n_paths = ctx.path_count();
let n_pathseg = ctx.pathseg_count();
let n_trans = ctx.trans_count();
let scene = ctx.get_scene_buf();
//dump_scene(&scene);
let renderer = Renderer::new(&session, scene, n_paths, n_pathseg, n_trans)?;
let image_usage = BufferUsage::MAP_READ | BufferUsage::COPY_DST;
let image_buf = session.create_buffer((WIDTH * HEIGHT * 4) as u64, image_usage)?;
cmd_buf.begin();
renderer.record(&mut cmd_buf, &query_pool);
cmd_buf.copy_image_to_buffer(&renderer.image_dev, &image_buf);
cmd_buf.host_barrier();
cmd_buf.finish();
let start = std::time::Instant::now();
let submitted = session.run_cmd_buf(cmd_buf, &[], &[])?;
submitted.wait()?;
println!("elapsed = {:?}", start.elapsed());
let ts = session.fetch_query_pool(&query_pool).unwrap();
println!("Element kernel time: {:.3}ms", ts[0] * 1e3);
println!(
"Tile allocation kernel time: {:.3}ms",
(ts[1] - ts[0]) * 1e3
);
println!("Coarse path kernel time: {:.3}ms", (ts[2] - ts[1]) * 1e3);
println!("Backdrop kernel time: {:.3}ms", (ts[3] - ts[2]) * 1e3);
println!("Binning kernel time: {:.3}ms", (ts[4] - ts[3]) * 1e3);
println!("Coarse raster kernel time: {:.3}ms", (ts[5] - ts[4]) * 1e3);
println!("Render kernel time: {:.3}ms", (ts[6] - ts[5]) * 1e3);
/*
let mut data: Vec<u32> = Default::default();
renderer.tile_buf.read(&mut data).unwrap();
piet_gpu::dump_k1_data(&data);
trace_ptcl(&data);
*/
let mut img_data: Vec<u8> = Default::default();
// Note: because png can use a `&[u8]` slice, we could avoid an extra copy
// (probably passing a slice into a closure). But for now: keep it simple.
image_buf.read(&mut img_data).unwrap();
// Write image as PNG file.
let path = Path::new("image.png");
let file = File::create(path).unwrap();
let ref mut w = BufWriter::new(file);
let mut encoder = png::Encoder::new(w, WIDTH as u32, HEIGHT as u32);
encoder.set_color(png::ColorType::RGBA);
encoder.set_depth(png::BitDepth::Eight);
let mut writer = encoder.write_header().unwrap();
writer.write_image_data(&img_data).unwrap();
}
Ok(())
}