vello/piet-gpu/shader/path_coarse.comp
Raph Levien 70a9c17e23 Continue building out pipeline
Plumbs the new tiling scheme to k4. This works (stroke only) but still
has some performance issues.
2020-06-03 12:21:09 -07:00

108 lines
3.4 KiB
Plaintext

// Coarse rasterization of path segments.
// Allocation and initialization of tiles for paths.
#version 450
#extension GL_GOOGLE_include_directive : enable
#include "setup.h"
#define TILE_ALLOC_WG 32
layout(local_size_x = TILE_ALLOC_WG, local_size_y = 1) in;
layout(set = 0, binding = 0) buffer PathSegBuf {
uint[] pathseg;
};
layout(set = 0, binding = 1) buffer AllocBuf {
uint n_paths;
uint n_pathseg;
uint alloc;
};
layout(set = 0, binding = 2) buffer TileBuf {
uint[] tile;
};
#include "pathseg.h"
#include "tile.h"
// scale factors useful for converting coordinates to tiles
#define SX (1.0 / float(TILE_WIDTH_PX))
#define SY (1.0 / float(TILE_HEIGHT_PX))
void main() {
uint element_ix = gl_GlobalInvocationID.x;
PathSegRef ref = PathSegRef(element_ix * PathSeg_size);
uint tag = PathSeg_Nop;
if (element_ix < n_pathseg) {
tag = PathSeg_tag(ref);
}
// Setup for coverage algorithm.
float a, b, c;
// Bounding box of element in pixel coordinates.
float xmin, xmax, ymin, ymax;
PathStrokeLine line;
switch (tag) {
case PathSeg_FillLine:
case PathSeg_StrokeLine:
line = PathSeg_StrokeLine_read(ref);
xmin = min(line.p0.x, line.p1.x) - line.stroke.x;
xmax = max(line.p0.x, line.p1.x) + line.stroke.x;
ymin = min(line.p0.y, line.p1.y) - line.stroke.y;
ymax = max(line.p0.y, line.p1.y) + line.stroke.y;
float dx = line.p1.x - line.p0.x;
float dy = line.p1.y - line.p0.y;
// Set up for per-scanline coverage formula, below.
float invslope = abs(dy) < 1e-9 ? 1e9 : dx / dy;
c = (line.stroke.x + abs(invslope) * (0.5 * float(TILE_HEIGHT_PX) + line.stroke.y)) * SX;
b = invslope; // Note: assumes square tiles, otherwise scale.
a = (line.p0.x - (line.p0.y - 0.5 * float(TILE_HEIGHT_PX)) * b) * SX;
break;
}
int x0 = int(floor((xmin) * SX));
int x1 = int(ceil((xmax) * SX));
int y0 = int(floor((ymin) * SY));
int y1 = int(ceil((ymax) * SY));
uint path_ix = line.path_ix;
Path path = Path_read(PathRef(path_ix * Path_size));
ivec4 bbox = ivec4(path.bbox);
x0 = clamp(x0, bbox.x, bbox.z);
y0 = clamp(y0, bbox.y, bbox.w);
x1 = clamp(x1, bbox.x, bbox.z);
y1 = clamp(y1, bbox.y, bbox.w);
float t = a + b * float(y0);
int stride = bbox.z - bbox.x;
int base = (y0 - bbox.y) * stride - bbox.x;
// TODO: can be tighter, use c to bound width
uint n_tile_alloc = uint((x1 - x0) * (y1 - y0));
// Consider using subgroups to aggregate atomic add.
uint tile_offset = atomicAdd(alloc, n_tile_alloc * TileSeg_size);
TileSeg tile_seg;
tile_seg.start = line.p0;
tile_seg.end = line.p1;
for (int y = y0; y < y1; y++) {
int xx0 = clamp(int(floor(t - c)), x0, x1);
int xx1 = clamp(int(ceil(t + c)), x0, x1);
for (int x = xx0; x < xx1; x++) {
TileRef tile_ref = Tile_index(path.tiles, uint(base + x));
uint tile_el = tile_ref.offset >> 2;
uint old;
uint actual;
do {
old = tile[tile_el];
actual = atomicCompSwap(tile[tile_el], old, tile_offset);
} while (actual != old);
tile_seg.next.offset = old;
TileSeg_write(TileSegRef(tile_offset), tile_seg);
tile_offset += TileSeg_size;
}
// TODO for fills: backdrop
t += b;
base += stride;
}
}