mirror of
https://github.com/italicsjenga/vello.git
synced 2025-01-25 18:56:35 +11:00
6a4e26ef2a
Defining MEM_DEBUG in mem.h will add a size field to Alloc and enable bounds and alignment checks for every memory read and write. Notes: - Deriving an Alloc from Path.tiles is unsound, but it's more trouble to convert Path.tiles from TileRef to a variable sized Alloc. - elements.comp note that "We should be able to use an array of structs but the NV shader compiler doesn't seem to like it". If that's still relevant, does the shared arrays of Allocs work? Signed-off-by: Elias Naur <mail@eliasnaur.com>
430 lines
18 KiB
Text
430 lines
18 KiB
Text
// SPDX-License-Identifier: Apache-2.0 OR MIT OR Unlicense
|
|
|
|
// The element processing stage, first in the pipeline.
|
|
//
|
|
// This stage is primarily about applying transforms and computing bounding
|
|
// boxes. It is organized as a scan over the input elements, producing
|
|
// annotated output elements.
|
|
|
|
#version 450
|
|
#extension GL_GOOGLE_include_directive : enable
|
|
|
|
#include "mem.h"
|
|
#include "setup.h"
|
|
|
|
#define N_ROWS 4
|
|
#define WG_SIZE 32
|
|
#define LG_WG_SIZE 5
|
|
#define PARTITION_SIZE (WG_SIZE * N_ROWS)
|
|
|
|
layout(local_size_x = WG_SIZE, local_size_y = 1) in;
|
|
|
|
layout(set = 0, binding = 1) readonly buffer ConfigBuf {
|
|
Config conf;
|
|
};
|
|
|
|
layout(set = 0, binding = 2) readonly buffer SceneBuf {
|
|
uint[] scene;
|
|
};
|
|
|
|
// It would be better to use the Vulkan memory model than
|
|
// "volatile" but shooting for compatibility here rather
|
|
// than doing things right.
|
|
layout(set = 0, binding = 3) volatile buffer StateBuf {
|
|
uint part_counter;
|
|
uint[] state;
|
|
};
|
|
|
|
#include "scene.h"
|
|
#include "state.h"
|
|
#include "annotated.h"
|
|
#include "pathseg.h"
|
|
|
|
#define StateBuf_stride (4 + 2 * State_size)
|
|
|
|
StateRef state_aggregate_ref(uint partition_ix) {
|
|
return StateRef(4 + partition_ix * StateBuf_stride);
|
|
}
|
|
|
|
StateRef state_prefix_ref(uint partition_ix) {
|
|
return StateRef(4 + partition_ix * StateBuf_stride + State_size);
|
|
}
|
|
|
|
uint state_flag_index(uint partition_ix) {
|
|
return partition_ix * (StateBuf_stride / 4);
|
|
}
|
|
|
|
// These correspond to X, A, P respectively in the prefix sum paper.
|
|
#define FLAG_NOT_READY 0
|
|
#define FLAG_AGGREGATE_READY 1
|
|
#define FLAG_PREFIX_READY 2
|
|
|
|
#define FLAG_SET_LINEWIDTH 1
|
|
#define FLAG_SET_BBOX 2
|
|
#define FLAG_RESET_BBOX 4
|
|
|
|
// This is almost like a monoid (the interaction between transformation and
|
|
// bounding boxes is approximate)
|
|
State combine_state(State a, State b) {
|
|
State c;
|
|
c.bbox.x = min(a.mat.x * b.bbox.x, a.mat.x * b.bbox.z) + min(a.mat.z * b.bbox.y, a.mat.z * b.bbox.w) + a.translate.x;
|
|
c.bbox.y = min(a.mat.y * b.bbox.x, a.mat.y * b.bbox.z) + min(a.mat.w * b.bbox.y, a.mat.w * b.bbox.w) + a.translate.y;
|
|
c.bbox.z = max(a.mat.x * b.bbox.x, a.mat.x * b.bbox.z) + max(a.mat.z * b.bbox.y, a.mat.z * b.bbox.w) + a.translate.x;
|
|
c.bbox.w = max(a.mat.y * b.bbox.x, a.mat.y * b.bbox.z) + max(a.mat.w * b.bbox.y, a.mat.w * b.bbox.w) + a.translate.y;
|
|
if ((a.flags & FLAG_RESET_BBOX) == 0 && b.bbox.z <= b.bbox.x && b.bbox.w <= b.bbox.y) {
|
|
c.bbox = a.bbox;
|
|
} else if ((a.flags & FLAG_RESET_BBOX) == 0 && (b.flags & FLAG_SET_BBOX) == 0 &&
|
|
(a.bbox.z > a.bbox.x || a.bbox.w > a.bbox.y))
|
|
{
|
|
c.bbox.xy = min(a.bbox.xy, c.bbox.xy);
|
|
c.bbox.zw = max(a.bbox.zw, c.bbox.zw);
|
|
}
|
|
// It would be more concise to cast to matrix types; ah well.
|
|
c.mat.x = a.mat.x * b.mat.x + a.mat.z * b.mat.y;
|
|
c.mat.y = a.mat.y * b.mat.x + a.mat.w * b.mat.y;
|
|
c.mat.z = a.mat.x * b.mat.z + a.mat.z * b.mat.w;
|
|
c.mat.w = a.mat.y * b.mat.z + a.mat.w * b.mat.w;
|
|
c.translate.x = a.mat.x * b.translate.x + a.mat.z * b.translate.y + a.translate.x;
|
|
c.translate.y = a.mat.y * b.translate.x + a.mat.w * b.translate.y + a.translate.y;
|
|
c.linewidth = (b.flags & FLAG_SET_LINEWIDTH) == 0 ? a.linewidth : b.linewidth;
|
|
c.flags = (a.flags & (FLAG_SET_LINEWIDTH | FLAG_SET_BBOX)) | b.flags;
|
|
c.flags |= (a.flags & FLAG_RESET_BBOX) >> 1;
|
|
c.path_count = a.path_count + b.path_count;
|
|
c.pathseg_count = a.pathseg_count + b.pathseg_count;
|
|
return c;
|
|
}
|
|
|
|
State map_element(ElementRef ref) {
|
|
// TODO: it would *probably* be more efficient to make the memory read patterns less
|
|
// divergent, though it would be more wasted memory.
|
|
uint tag = Element_tag(ref);
|
|
State c;
|
|
c.bbox = vec4(0.0, 0.0, 0.0, 0.0);
|
|
c.mat = vec4(1.0, 0.0, 0.0, 1.0);
|
|
c.translate = vec2(0.0, 0.0);
|
|
c.linewidth = 1.0; // TODO should be 0.0
|
|
c.flags = 0;
|
|
c.path_count = 0;
|
|
c.pathseg_count = 0;
|
|
switch (tag) {
|
|
case Element_FillLine:
|
|
case Element_StrokeLine:
|
|
LineSeg line = Element_FillLine_read(ref);
|
|
c.bbox.xy = min(line.p0, line.p1);
|
|
c.bbox.zw = max(line.p0, line.p1);
|
|
c.pathseg_count = 1;
|
|
break;
|
|
case Element_FillQuad:
|
|
case Element_StrokeQuad:
|
|
QuadSeg quad = Element_FillQuad_read(ref);
|
|
c.bbox.xy = min(min(quad.p0, quad.p1), quad.p2);
|
|
c.bbox.zw = max(max(quad.p0, quad.p1), quad.p2);
|
|
c.pathseg_count = 1;
|
|
break;
|
|
case Element_FillCubic:
|
|
case Element_StrokeCubic:
|
|
CubicSeg cubic = Element_FillCubic_read(ref);
|
|
c.bbox.xy = min(min(cubic.p0, cubic.p1), min(cubic.p2, cubic.p3));
|
|
c.bbox.zw = max(max(cubic.p0, cubic.p1), max(cubic.p2, cubic.p3));
|
|
c.pathseg_count = 1;
|
|
break;
|
|
case Element_Fill:
|
|
case Element_Stroke:
|
|
case Element_BeginClip:
|
|
c.flags = FLAG_RESET_BBOX;
|
|
c.path_count = 1;
|
|
break;
|
|
case Element_EndClip:
|
|
c.path_count = 1;
|
|
break;
|
|
case Element_SetLineWidth:
|
|
SetLineWidth lw = Element_SetLineWidth_read(ref);
|
|
c.linewidth = lw.width;
|
|
c.flags = FLAG_SET_LINEWIDTH;
|
|
break;
|
|
case Element_Transform:
|
|
Transform t = Element_Transform_read(ref);
|
|
c.mat = t.mat;
|
|
c.translate = t.translate;
|
|
break;
|
|
}
|
|
return c;
|
|
}
|
|
|
|
// Get the bounding box of a circle transformed by the matrix into an ellipse.
|
|
vec2 get_linewidth(State st) {
|
|
// See https://www.iquilezles.org/www/articles/ellipses/ellipses.htm
|
|
return 0.5 * st.linewidth * vec2(length(st.mat.xz), length(st.mat.yw));
|
|
}
|
|
|
|
// We should be able to use an array of structs but the NV shader compiler
|
|
// doesn't seem to like it :/
|
|
//shared State sh_state[WG_SIZE];
|
|
shared vec4 sh_mat[WG_SIZE];
|
|
shared vec2 sh_translate[WG_SIZE];
|
|
shared vec4 sh_bbox[WG_SIZE];
|
|
shared float sh_width[WG_SIZE];
|
|
shared uint sh_flags[WG_SIZE];
|
|
shared uint sh_path_count[WG_SIZE];
|
|
shared uint sh_pathseg_count[WG_SIZE];
|
|
|
|
shared uint sh_part_ix;
|
|
shared State sh_prefix;
|
|
|
|
void main() {
|
|
if (mem_error != NO_ERROR) {
|
|
return;
|
|
}
|
|
|
|
State th_state[N_ROWS];
|
|
// Determine partition to process by atomic counter (described in Section
|
|
// 4.4 of prefix sum paper).
|
|
if (gl_LocalInvocationID.x == 0) {
|
|
sh_part_ix = atomicAdd(part_counter, 1);
|
|
}
|
|
barrier();
|
|
uint part_ix = sh_part_ix;
|
|
|
|
uint ix = part_ix * PARTITION_SIZE + gl_LocalInvocationID.x * N_ROWS;
|
|
ElementRef ref = ElementRef(ix * Element_size);
|
|
|
|
th_state[0] = map_element(ref);
|
|
for (uint i = 1; i < N_ROWS; i++) {
|
|
// discussion question: would it be faster to load using more coherent patterns
|
|
// into thread memory? This is kinda strided.
|
|
th_state[i] = combine_state(th_state[i - 1], map_element(Element_index(ref, i)));
|
|
}
|
|
State agg = th_state[N_ROWS - 1];
|
|
sh_mat[gl_LocalInvocationID.x] = agg.mat;
|
|
sh_translate[gl_LocalInvocationID.x] = agg.translate;
|
|
sh_bbox[gl_LocalInvocationID.x] = agg.bbox;
|
|
sh_width[gl_LocalInvocationID.x] = agg.linewidth;
|
|
sh_flags[gl_LocalInvocationID.x] = agg.flags;
|
|
sh_path_count[gl_LocalInvocationID.x] = agg.path_count;
|
|
sh_pathseg_count[gl_LocalInvocationID.x] = agg.pathseg_count;
|
|
for (uint i = 0; i < LG_WG_SIZE; i++) {
|
|
barrier();
|
|
if (gl_LocalInvocationID.x >= (1 << i)) {
|
|
State other;
|
|
uint ix = gl_LocalInvocationID.x - (1 << i);
|
|
other.mat = sh_mat[ix];
|
|
other.translate = sh_translate[ix];
|
|
other.bbox = sh_bbox[ix];
|
|
other.linewidth = sh_width[ix];
|
|
other.flags = sh_flags[ix];
|
|
other.path_count = sh_path_count[ix];
|
|
other.pathseg_count = sh_pathseg_count[ix];
|
|
agg = combine_state(other, agg);
|
|
}
|
|
barrier();
|
|
sh_mat[gl_LocalInvocationID.x] = agg.mat;
|
|
sh_translate[gl_LocalInvocationID.x] = agg.translate;
|
|
sh_bbox[gl_LocalInvocationID.x] = agg.bbox;
|
|
sh_width[gl_LocalInvocationID.x] = agg.linewidth;
|
|
sh_flags[gl_LocalInvocationID.x] = agg.flags;
|
|
sh_path_count[gl_LocalInvocationID.x] = agg.path_count;
|
|
sh_pathseg_count[gl_LocalInvocationID.x] = agg.pathseg_count;
|
|
}
|
|
|
|
State exclusive;
|
|
exclusive.bbox = vec4(0.0, 0.0, 0.0, 0.0);
|
|
exclusive.mat = vec4(1.0, 0.0, 0.0, 1.0);
|
|
exclusive.translate = vec2(0.0, 0.0);
|
|
exclusive.linewidth = 1.0; //TODO should be 0.0
|
|
exclusive.flags = 0;
|
|
exclusive.path_count = 0;
|
|
exclusive.pathseg_count = 0;
|
|
|
|
// Publish aggregate for this partition
|
|
if (gl_LocalInvocationID.x == WG_SIZE - 1) {
|
|
// Note: with memory model, we'd want to generate the atomic store version of this.
|
|
State_write(state_aggregate_ref(part_ix), agg);
|
|
uint flag = FLAG_AGGREGATE_READY;
|
|
memoryBarrierBuffer();
|
|
if (part_ix == 0) {
|
|
State_write(state_prefix_ref(part_ix), agg);
|
|
flag = FLAG_PREFIX_READY;
|
|
}
|
|
state[state_flag_index(part_ix)] = flag;
|
|
if (part_ix != 0) {
|
|
// step 4 of paper: decoupled lookback
|
|
uint look_back_ix = part_ix - 1;
|
|
|
|
State their_agg;
|
|
uint their_ix = 0;
|
|
while (true) {
|
|
flag = state[state_flag_index(look_back_ix)];
|
|
if (flag == FLAG_PREFIX_READY) {
|
|
State their_prefix = State_read(state_prefix_ref(look_back_ix));
|
|
exclusive = combine_state(their_prefix, exclusive);
|
|
break;
|
|
} else if (flag == FLAG_AGGREGATE_READY) {
|
|
their_agg = State_read(state_aggregate_ref(look_back_ix));
|
|
exclusive = combine_state(their_agg, exclusive);
|
|
look_back_ix--;
|
|
their_ix = 0;
|
|
continue;
|
|
}
|
|
// else spin
|
|
|
|
// Unfortunately there's no guarantee of forward progress of other
|
|
// workgroups, so compute a bit of the aggregate before trying again.
|
|
// In the worst case, spinning stops when the aggregate is complete.
|
|
ElementRef ref = ElementRef((look_back_ix * PARTITION_SIZE + their_ix) * Element_size);
|
|
State s = map_element(ref);
|
|
if (their_ix == 0) {
|
|
their_agg = s;
|
|
} else {
|
|
their_agg = combine_state(their_agg, s);
|
|
}
|
|
their_ix++;
|
|
if (their_ix == PARTITION_SIZE) {
|
|
exclusive = combine_state(their_agg, exclusive);
|
|
if (look_back_ix == 0) {
|
|
break;
|
|
}
|
|
look_back_ix--;
|
|
their_ix = 0;
|
|
}
|
|
}
|
|
|
|
// step 5 of paper: compute inclusive prefix
|
|
State inclusive_prefix = combine_state(exclusive, agg);
|
|
sh_prefix = exclusive;
|
|
State_write(state_prefix_ref(part_ix), inclusive_prefix);
|
|
memoryBarrierBuffer();
|
|
flag = FLAG_PREFIX_READY;
|
|
state[state_flag_index(part_ix)] = flag;
|
|
}
|
|
}
|
|
barrier();
|
|
if (part_ix != 0) {
|
|
exclusive = sh_prefix;
|
|
}
|
|
|
|
State row = exclusive;
|
|
if (gl_LocalInvocationID.x > 0) {
|
|
uint ix = gl_LocalInvocationID.x - 1;
|
|
State other;
|
|
other.mat = sh_mat[ix];
|
|
other.translate = sh_translate[ix];
|
|
other.bbox = sh_bbox[ix];
|
|
other.linewidth = sh_width[ix];
|
|
other.flags = sh_flags[ix];
|
|
other.path_count = sh_path_count[ix];
|
|
other.pathseg_count = sh_pathseg_count[ix];
|
|
row = combine_state(row, other);
|
|
}
|
|
for (uint i = 0; i < N_ROWS; i++) {
|
|
State st = combine_state(row, th_state[i]);
|
|
|
|
// Here we read again from the original scene. There may be
|
|
// gains to be had from stashing in shared memory or possibly
|
|
// registers (though register pressure is an issue).
|
|
ElementRef this_ref = Element_index(ref, i);
|
|
uint tag = Element_tag(this_ref);
|
|
switch (tag) {
|
|
case Element_FillLine:
|
|
case Element_StrokeLine:
|
|
LineSeg line = Element_StrokeLine_read(this_ref);
|
|
vec2 p0 = st.mat.xy * line.p0.x + st.mat.zw * line.p0.y + st.translate;
|
|
vec2 p1 = st.mat.xy * line.p1.x + st.mat.zw * line.p1.y + st.translate;
|
|
PathStrokeCubic path_cubic;
|
|
path_cubic.p0 = p0;
|
|
path_cubic.p1 = mix(p0, p1, 1.0 / 3.0);
|
|
path_cubic.p2 = mix(p1, p0, 1.0 / 3.0);
|
|
path_cubic.p3 = p1;
|
|
path_cubic.path_ix = st.path_count;
|
|
if (tag == Element_StrokeLine) {
|
|
path_cubic.stroke = get_linewidth(st);
|
|
} else {
|
|
path_cubic.stroke = vec2(0.0);
|
|
}
|
|
// We do encoding a bit by hand to minimize divergence. Another approach
|
|
// would be to have a fill/stroke bool.
|
|
PathSegRef path_out_ref = PathSegRef(conf.pathseg_alloc.offset + (st.pathseg_count - 1) * PathSeg_size);
|
|
uint out_tag = tag == Element_FillLine ? PathSeg_FillCubic : PathSeg_StrokeCubic;
|
|
write_mem(conf.pathseg_alloc, path_out_ref.offset >> 2, out_tag);
|
|
PathStrokeCubic_write(conf.pathseg_alloc, PathStrokeCubicRef(path_out_ref.offset + 4), path_cubic);
|
|
break;
|
|
case Element_FillQuad:
|
|
case Element_StrokeQuad:
|
|
QuadSeg quad = Element_StrokeQuad_read(this_ref);
|
|
p0 = st.mat.xy * quad.p0.x + st.mat.zw * quad.p0.y + st.translate;
|
|
p1 = st.mat.xy * quad.p1.x + st.mat.zw * quad.p1.y + st.translate;
|
|
vec2 p2 = st.mat.xy * quad.p2.x + st.mat.zw * quad.p2.y + st.translate;
|
|
path_cubic;
|
|
path_cubic.p0 = p0;
|
|
path_cubic.p1 = mix(p1, p0, 1.0 / 3.0);
|
|
path_cubic.p2 = mix(p1, p2, 1.0 / 3.0);
|
|
path_cubic.p3 = p2;
|
|
path_cubic.path_ix = st.path_count;
|
|
if (tag == Element_StrokeQuad) {
|
|
path_cubic.stroke = get_linewidth(st);
|
|
} else {
|
|
path_cubic.stroke = vec2(0.0);
|
|
}
|
|
// We do encoding a bit by hand to minimize divergence. Another approach
|
|
// would be to have a fill/stroke bool.
|
|
path_out_ref = PathSegRef(conf.pathseg_alloc.offset + (st.pathseg_count - 1) * PathSeg_size);
|
|
out_tag = tag == Element_FillQuad ? PathSeg_FillCubic : PathSeg_StrokeCubic;
|
|
write_mem(conf.pathseg_alloc, path_out_ref.offset >> 2, out_tag);
|
|
PathStrokeCubic_write(conf.pathseg_alloc, PathStrokeCubicRef(path_out_ref.offset + 4), path_cubic);
|
|
break;
|
|
case Element_FillCubic:
|
|
case Element_StrokeCubic:
|
|
CubicSeg cubic = Element_StrokeCubic_read(this_ref);
|
|
path_cubic;
|
|
path_cubic.p0 = st.mat.xy * cubic.p0.x + st.mat.zw * cubic.p0.y + st.translate;
|
|
path_cubic.p1 = st.mat.xy * cubic.p1.x + st.mat.zw * cubic.p1.y + st.translate;
|
|
path_cubic.p2 = st.mat.xy * cubic.p2.x + st.mat.zw * cubic.p2.y + st.translate;
|
|
path_cubic.p3 = st.mat.xy * cubic.p3.x + st.mat.zw * cubic.p3.y + st.translate;
|
|
path_cubic.path_ix = st.path_count;
|
|
if (tag == Element_StrokeCubic) {
|
|
path_cubic.stroke = get_linewidth(st);
|
|
} else {
|
|
path_cubic.stroke = vec2(0.0);
|
|
}
|
|
// We do encoding a bit by hand to minimize divergence. Another approach
|
|
// would be to have a fill/stroke bool.
|
|
path_out_ref = PathSegRef(conf.pathseg_alloc.offset + (st.pathseg_count - 1) * PathSeg_size);
|
|
out_tag = tag == Element_FillCubic ? PathSeg_FillCubic : PathSeg_StrokeCubic;
|
|
write_mem(conf.pathseg_alloc, path_out_ref.offset >> 2, out_tag);
|
|
PathStrokeCubic_write(conf.pathseg_alloc, PathStrokeCubicRef(path_out_ref.offset + 4), path_cubic);
|
|
break;
|
|
case Element_Stroke:
|
|
Stroke stroke = Element_Stroke_read(this_ref);
|
|
AnnoStroke anno_stroke;
|
|
anno_stroke.rgba_color = stroke.rgba_color;
|
|
vec2 lw = get_linewidth(st);
|
|
anno_stroke.bbox = st.bbox + vec4(-lw, lw);
|
|
anno_stroke.linewidth = st.linewidth * sqrt(abs(st.mat.x * st.mat.w - st.mat.y * st.mat.z));
|
|
AnnotatedRef out_ref = AnnotatedRef(conf.anno_alloc.offset + (st.path_count - 1) * Annotated_size);
|
|
Annotated_Stroke_write(conf.anno_alloc, out_ref, anno_stroke);
|
|
break;
|
|
case Element_Fill:
|
|
Fill fill = Element_Fill_read(this_ref);
|
|
AnnoFill anno_fill;
|
|
anno_fill.rgba_color = fill.rgba_color;
|
|
anno_fill.bbox = st.bbox;
|
|
out_ref = AnnotatedRef(conf.anno_alloc.offset + (st.path_count - 1) * Annotated_size);
|
|
Annotated_Fill_write(conf.anno_alloc, out_ref, anno_fill);
|
|
break;
|
|
case Element_BeginClip:
|
|
Clip begin_clip = Element_BeginClip_read(this_ref);
|
|
AnnoClip anno_begin_clip = AnnoClip(begin_clip.bbox);
|
|
// This is the absolute bbox, it's been transformed during encoding.
|
|
anno_begin_clip.bbox = begin_clip.bbox;
|
|
out_ref = AnnotatedRef(conf.anno_alloc.offset + (st.path_count - 1) * Annotated_size);
|
|
Annotated_BeginClip_write(conf.anno_alloc, out_ref, anno_begin_clip);
|
|
break;
|
|
case Element_EndClip:
|
|
Clip end_clip = Element_EndClip_read(this_ref);
|
|
// This bbox is expected to be the same as the begin one.
|
|
AnnoClip anno_end_clip = AnnoClip(end_clip.bbox);
|
|
out_ref = AnnotatedRef(conf.anno_alloc.offset + (st.path_count - 1) * Annotated_size);
|
|
Annotated_EndClip_write(conf.anno_alloc, out_ref, anno_end_clip);
|
|
break;
|
|
}
|
|
}
|
|
}
|