vello/piet-wgsl/shader/path_coarse.twgsl
Raph Levien b6c4963d4c Initial commit of piet-wgsl
Starting an experimental port to WGSL shader language, using wgpu to run the examples. As of this commit, it's quite hacky and takes some shortcuts, but does render paths to a grayscale texture.
2022-10-24 15:08:14 -07:00

329 lines
12 KiB
GLSL

// Copyright 2022 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Also licensed under MIT license, at your choice.
{{> pathtag}}
@group(0) @binding(0)
var<storage> path_tags: array<u32>;
@group(0) @binding(1)
var<storage> tag_monoids: array<TagMonoid>;
// TODO: should probably have single "scene" binding.
@group(0) @binding(2)
var<storage> path_data: array<u32>;
{{#if cubics_out}}
@group(0) @binding(3)
var<storage, read_write> output: array<vec2<f32>>;
{{else}}
{{> config}}
struct Tile {
backdrop: atomic<i32>,
segments: atomic<u32>,
}
{{> segment}}
// Should probably be uniform binding
@group(0) @binding(3)
var<storage> config: Config;
@group(0) @binding(4)
var<storage, read_write> tiles: array<Tile>;
@group(0) @binding(5)
var<storage, read_write> segments: array<Segment>;
{{/if}}
fn read_f32_point(ix: u32) -> vec2<f32> {
let x = bitcast<f32>(path_data[ix]);
let y = bitcast<f32>(path_data[ix + 1u]);
return vec2<f32>(x, y);
}
fn read_i16_point(ix: u32) -> vec2<f32> {
let raw = path_data[ix];
let x = f32(i32(raw << 16u) >> 16u);
let y = f32(i32(raw) >> 16u);
return vec2<f32>(x, y);
}
{{#unless cubics_out}}
let TILE_WIDTH = 16u;
let TILE_HEIGHT = 16u;
struct SubdivResult {
val: f32,
a0: f32,
a2: f32,
}
let D = 0.67;
fn approx_parabola_integral(x: f32) -> f32 {
return x * inverseSqrt(sqrt(1.0 - D + (D * D * D * D + 0.25 * x * x)));
}
let B = 0.39;
fn approx_parabola_inv_integral(x: f32) -> f32 {
return x * sqrt(1.0 - B + (B * B + 0.5 * x * x));
}
fn estimate_subdiv(p0: vec2<f32>, p1: vec2<f32>, p2: vec2<f32>, sqrt_tol: f32) -> SubdivResult {
let d01 = p1 - p0;
let d12 = p2 - p1;
let dd = d01 - d12;
let cross = (p2.x - p0.x) * dd.y - (p2.y - p0.y) * dd.x;
let cross_inv = 1.0 / cross;
let x0 = dot(d01, dd) * cross_inv;
let x2 = dot(d12, dd) * cross_inv;
let scale = abs(cross / (length(dd) * (x2 - x0)));
let a0 = approx_parabola_integral(x0);
let a2 = approx_parabola_integral(x2);
var val = 0.0;
if scale < 1e9 {
let da = abs(a2 - a0);
let sqrt_scale = sqrt(scale);
if sign(x0) == sign(x2) {
val = sqrt_scale;
} else {
let xmin = sqrt_tol / sqrt_scale;
val = sqrt_tol / approx_parabola_integral(xmin);
}
val *= da;
}
return SubdivResult(val, a0, a2);
}
fn eval_quad(p0: vec2<f32>, p1: vec2<f32>, p2: vec2<f32>, t: f32) -> vec2<f32> {
let mt = 1.0 - t;
return p0 * (mt * mt) + (p1 * (mt * 2.0) + p2 * t) * t;
}
fn eval_cubic(p0: vec2<f32>, p1: vec2<f32>, p2: vec2<f32>, p3: vec2<f32>, t: f32) -> vec2<f32> {
let mt = 1.0 - t;
return p0 * (mt * mt * mt) + (p1 * (mt * mt * 3.0) + (p2 * (mt * 3.0) + p3 * t) * t) * t;
}
fn alloc_segment() -> u32 {
// Use 0-index segment (address is sentinel) as counter
// TODO: separate small buffer binding for this?
return atomicAdd(&tiles[4096].segments, 1u) + 1u;
}
{{/unless}}
let MAX_QUADS = 16u;
@compute @workgroup_size(256)
fn main(
@builtin(global_invocation_id) global_id: vec3<u32>,
@builtin(local_invocation_id) local_id: vec3<u32>,
) {
// Obtain exclusive prefix sum of tag monoid
let ix = global_id.x;
let tag_word = path_tags[ix >> 2u];
let shift = (ix & 3u) * 8u;
var tm = reduce_tag(tag_word & ((1u << shift) - 1u));
tm = combine_tag_monoid(tag_monoids[ix >> 2u], tm);
var tag_byte = (tag_word >> shift) & 0xffu;
// should be extractBits(tag_word, shift, 8)?
// Decode path data
let seg_type = tag_byte & PATH_TAG_SEG_TYPE;
if seg_type != 0u {
var p0: vec2<f32>;
var p1: vec2<f32>;
var p2: vec2<f32>;
var p3: vec2<f32>;
if (tag_byte & PATH_TAG_F32) != 0u {
p0 = read_f32_point(tm.pathseg_offset);
p1 = read_f32_point(tm.pathseg_offset + 2u);
if seg_type >= PATH_TAG_QUADTO {
p2 = read_f32_point(tm.pathseg_offset + 4u);
if seg_type == PATH_TAG_CUBICTO {
p3 = read_f32_point(tm.pathseg_offset + 6u);
}
}
} else {
p0 = read_i16_point(tm.pathseg_offset);
p1 = read_i16_point(tm.pathseg_offset + 1u);
if seg_type >= PATH_TAG_QUADTO {
p2 = read_i16_point(tm.pathseg_offset + 2u);
if seg_type == PATH_TAG_CUBICTO {
p3 = read_i16_point(tm.pathseg_offset + 3u);
}
}
}
// TODO: transform goes here
// Degree-raise
if seg_type == PATH_TAG_LINETO {
p3 = p1;
p2 = mix(p3, p0, 1.0 / 3.0);
p1 = mix(p0, p3, 1.0 / 3.0);
} else if seg_type == PATH_TAG_QUADTO {
p3 = p2;
p2 = mix(p1, p2, 1.0 / 3.0);
p1 = mix(p1, p0, 1.0 / 3.0);
}
{{#if cubics_out}}
let out_ix = ix * 4u;
output[out_ix] = p0;
output[out_ix + 1u] = p1;
output[out_ix + 2u] = p2;
output[out_ix + 3u] = p3;
{{else}}
let err_v = 3.0 * (p2 - p1) + p0 - p3;
let err = dot(err_v, err_v);
let ACCURACY = 0.25;
let Q_ACCURACY = ACCURACY * 0.1;
let REM_ACCURACY = (ACCURACY - Q_ACCURACY);
let MAX_HYPOT2 = 432.0 * Q_ACCURACY * Q_ACCURACY;
var n_quads = max(u32(ceil(pow(err * (1.0 / MAX_HYPOT2), 1.0 / 6.0))), 1u);
n_quads = min(n_quads, MAX_QUADS);
var keep_params: array<SubdivResult, MAX_QUADS>;
var val = 0.0;
var qp0 = p0;
let step = 1.0 / f32(n_quads);
for (var i = 0u; i < n_quads; i += 1u) {
let t = f32(i + 1u) * step;
let qp2 = eval_cubic(p0, p1, p2, p3, t);
var qp1 = eval_cubic(p0, p1, p2, p3, t - 0.5 * step);
qp1 = 2.0 * qp1 - 0.5 * (qp0 + qp2);
let params = estimate_subdiv(qp0, qp1, qp2, sqrt(REM_ACCURACY));
keep_params[i] = params;
val += params.val;
qp0 = qp2;
}
let n = max(u32(ceil(val * (0.5 / sqrt(REM_ACCURACY)))), 1u);
var lp0 = p0;
qp0 = p0;
let v_step = val / f32(n);
var n_out = 1u;
var val_sum = 0.0;
for (var i = 0u; i < n_quads; i += 1u) {
let t = f32(i + 1u) * step;
let qp2 = eval_cubic(p0, p1, p2, p3, t);
var qp1 = eval_cubic(p0, p1, p2, p3, t - 0.5 * step);
qp1 = 2.0 * qp1 - 0.5 * (qp0 + qp2);
let params = keep_params[i];
let u0 = approx_parabola_inv_integral(params.a0);
let u2 = approx_parabola_inv_integral(params.a2);
let uscale = 1.0 / (u2 - u0);
var val_target = f32(n_out) * v_step;
while n_out == n || val_target < val_sum + params.val {
var lp1: vec2<f32>;
if n_out == n {
lp1 = p3;
} else {
let u = (val_target - val_sum) / params.val;
let a = mix(params.a0, params.a2, u);
let au = approx_parabola_inv_integral(a);
let t = (au - u0) * uscale;
lp1 = eval_quad(qp0, qp1, qp2, t);
}
// Output line segment lp0..lp1
let xymin = min(lp0, lp1);
let xymax = max(lp0, lp1);
let dp = lp1 - lp0;
let recip_dx = 1.0 / dp.x;
let invslope = select(dp.x / dp.y, 1.0e9, abs(dp.y) < 1.0e-9);
let c = 0.5 * abs(invslope);
let b = invslope;
let SX = 1.0 / f32(TILE_WIDTH);
let SY = 1.0 / f32(TILE_HEIGHT);
let a = (lp0.x - (lp0.y - 0.5 * f32(TILE_HEIGHT)) * b) * SX;
var x0 = i32(floor(xymin.x * SX));
var x1 = i32(floor(xymax.x * SX) + 1.0);
var y0 = i32(floor(xymin.y * SY));
var y1 = i32(floor(xymax.y * SY) + 1.0);
x0 = clamp(x0, 0, i32(config.width_in_tiles));
x1 = clamp(x1, 0, i32(config.width_in_tiles));
y0 = clamp(y0, 0, i32(config.height_in_tiles));
y1 = clamp(y1, 0, i32(config.height_in_tiles));
var xc = a + b * f32(y0);
var xray = i32(floor(lp0.x * SX));
var last_xray = i32(floor(lp1.x * SX));
if dp.y < 0.0 {
let tmp = xray;
xray = last_xray;
last_xray = tmp;
}
for (var y = y0; y < y1; y += 1) {
let tile_y0 = f32(y) * f32(TILE_HEIGHT);
let xbackdrop = max(xray + 1, 0);
if xymin.y < tile_y0 && xbackdrop < i32(config.width_in_tiles) {
let backdrop = select(-1, 1, dp.y < 0.0);
let tile_ix = y * i32(config.width_in_tiles) + xbackdrop;
atomicAdd(&tiles[tile_ix].backdrop, backdrop);
}
var next_xray = last_xray;
if y + 1 < y1 {
let tile_y1 = f32(y + 1) * f32(TILE_HEIGHT);
let x_edge = lp0.x + (tile_y1 - lp0.y) * invslope;
next_xray = i32(floor(x_edge * SX));
}
let min_xray = min(xray, next_xray);
let max_xray = max(xray, next_xray);
var xx0 = min(i32(floor(xc - c)), min_xray);
var xx1 = max(i32(ceil(xc + c)), max_xray + 1);
xx0 = clamp(xx0, x0, x1);
xx1 = clamp(xx1, x0, x1);
var tile_seg: Segment;
for (var x = xx0; x < xx1; x += 1) {
let tile_x0 = f32(x) * f32(TILE_WIDTH);
let tile_ix = y * i32(config.width_in_tiles) + x;
// allocate segment, insert linked list
let seg_ix = alloc_segment();
let old = atomicExchange(&tiles[tile_ix].segments, seg_ix);
tile_seg.origin = lp0;
tile_seg.delta = dp;
var y_edge = mix(lp0.y, lp1.y, (tile_x0 - lp0.x) * recip_dx);
if xymin.x < tile_x0 {
let p = vec2(tile_x0, y_edge);
if dp.x < 0.0 {
tile_seg.delta = p - lp0;
} else {
tile_seg.origin = p;
tile_seg.delta = lp1 - p;
}
if tile_seg.delta.x == 0.0 {
tile_seg.delta.x = sign(dp.x) * 1e-9;
}
}
if x <= min_xray || max_xray < x {
y_edge = 1e9;
}
tile_seg.y_edge = y_edge;
tile_seg.next = old;
segments[seg_ix] = tile_seg;
}
xc += b;
xray = next_xray;
}
n_out += 1u;
val_target += v_step;
lp0 = lp1;
}
val_sum += params.val;
qp0 = qp2;
}
{{/if}}
}
}