vello/piet-gpu/shader/gen/coarse.msl
Raph Levien acb3933d94 Variable size encoding of draw objects
This patch switches to a variable size encoding of draw objects.

In addition to the CPU-side scene encoding, it changes the representation of intermediate per draw object state from the `Annotated` struct to a variable "info" encoding. In addition, the bounding boxes are moved to a separate array (for a more "structure of "arrays" approach). Data that's unchanged from the scene encoding is not copied. Rather, downstream stages can access the data from the scene buffer (reducing allocation and copying).

Prefix sums, computed in `DrawMonoid` track the offset of both scene and intermediate data. The tags for the CPU-side encoding have been split into their own stream (again a change from AoS to SoA style).

This is not necessarily the final form. There's some stuff (including at least one piet-gpu-derive type) that can be deleted. In addition, the linewidth field should probably move from the info to path-specific. Also, the 1:1 correspondence between draw object and path has not yet been broken.

Closes #152
2022-03-14 16:32:08 -07:00

1124 lines
38 KiB
Plaintext
Generated

#pragma clang diagnostic ignored "-Wmissing-prototypes"
#pragma clang diagnostic ignored "-Wunused-variable"
#include <metal_stdlib>
#include <simd/simd.h>
#include <metal_atomic>
using namespace metal;
// Implementation of the GLSL findLSB() function
template<typename T>
inline T spvFindLSB(T x)
{
return select(ctz(x), T(-1), x == T(0));
}
struct Alloc
{
uint offset;
};
struct MallocResult
{
Alloc alloc;
bool failed;
};
struct BinInstanceRef
{
uint offset;
};
struct BinInstance
{
uint element_ix;
};
struct PathRef
{
uint offset;
};
struct TileRef
{
uint offset;
};
struct Path
{
uint4 bbox;
TileRef tiles;
};
struct TileSegRef
{
uint offset;
};
struct Tile
{
TileSegRef tile;
int backdrop;
};
struct CmdStrokeRef
{
uint offset;
};
struct CmdStroke
{
uint tile_ref;
float half_width;
};
struct CmdFillRef
{
uint offset;
};
struct CmdFill
{
uint tile_ref;
int backdrop;
};
struct CmdColorRef
{
uint offset;
};
struct CmdColor
{
uint rgba_color;
};
struct CmdLinGradRef
{
uint offset;
};
struct CmdLinGrad
{
uint index;
float line_x;
float line_y;
float line_c;
};
struct CmdImageRef
{
uint offset;
};
struct CmdImage
{
uint index;
int2 offset;
};
struct CmdEndClipRef
{
uint offset;
};
struct CmdEndClip
{
uint blend;
};
struct CmdJumpRef
{
uint offset;
};
struct CmdJump
{
uint new_ref;
};
struct CmdRef
{
uint offset;
};
struct Memory
{
uint mem_offset;
uint mem_error;
uint memory[1];
};
struct Alloc_1
{
uint offset;
};
struct Config
{
uint n_elements;
uint n_pathseg;
uint width_in_tiles;
uint height_in_tiles;
Alloc_1 tile_alloc;
Alloc_1 bin_alloc;
Alloc_1 ptcl_alloc;
Alloc_1 pathseg_alloc;
Alloc_1 anno_alloc;
Alloc_1 trans_alloc;
Alloc_1 path_bbox_alloc;
Alloc_1 drawmonoid_alloc;
Alloc_1 clip_alloc;
Alloc_1 clip_bic_alloc;
Alloc_1 clip_stack_alloc;
Alloc_1 clip_bbox_alloc;
Alloc_1 draw_bbox_alloc;
Alloc_1 drawinfo_alloc;
uint n_trans;
uint n_path;
uint n_clip;
uint trans_offset;
uint linewidth_offset;
uint pathtag_offset;
uint pathseg_offset;
uint drawtag_offset;
uint drawdata_offset;
};
struct ConfigBuf
{
Config conf;
};
struct SceneBuf
{
uint scene[1];
};
constant uint3 gl_WorkGroupSize [[maybe_unused]] = uint3(256u, 1u, 1u);
static inline __attribute__((always_inline))
Alloc slice_mem(thread const Alloc& a, thread const uint& offset, thread const uint& size)
{
return Alloc{ a.offset + offset };
}
static inline __attribute__((always_inline))
bool touch_mem(thread const Alloc& alloc, thread const uint& offset)
{
return true;
}
static inline __attribute__((always_inline))
uint read_mem(thread const Alloc& alloc, thread const uint& offset, device Memory& v_242, constant uint& v_242BufferSize)
{
Alloc param = alloc;
uint param_1 = offset;
if (!touch_mem(param, param_1))
{
return 0u;
}
uint v = v_242.memory[offset];
return v;
}
static inline __attribute__((always_inline))
Alloc new_alloc(thread const uint& offset, thread const uint& size, thread const bool& mem_ok)
{
Alloc a;
a.offset = offset;
return a;
}
static inline __attribute__((always_inline))
BinInstanceRef BinInstance_index(thread const BinInstanceRef& ref, thread const uint& index)
{
return BinInstanceRef{ ref.offset + (index * 4u) };
}
static inline __attribute__((always_inline))
BinInstance BinInstance_read(thread const Alloc& a, thread const BinInstanceRef& ref, device Memory& v_242, constant uint& v_242BufferSize)
{
uint ix = ref.offset >> uint(2);
Alloc param = a;
uint param_1 = ix + 0u;
uint raw0 = read_mem(param, param_1, v_242, v_242BufferSize);
BinInstance s;
s.element_ix = raw0;
return s;
}
static inline __attribute__((always_inline))
Path Path_read(thread const Alloc& a, thread const PathRef& ref, device Memory& v_242, constant uint& v_242BufferSize)
{
uint ix = ref.offset >> uint(2);
Alloc param = a;
uint param_1 = ix + 0u;
uint raw0 = read_mem(param, param_1, v_242, v_242BufferSize);
Alloc param_2 = a;
uint param_3 = ix + 1u;
uint raw1 = read_mem(param_2, param_3, v_242, v_242BufferSize);
Alloc param_4 = a;
uint param_5 = ix + 2u;
uint raw2 = read_mem(param_4, param_5, v_242, v_242BufferSize);
Path s;
s.bbox = uint4(raw0 & 65535u, raw0 >> uint(16), raw1 & 65535u, raw1 >> uint(16));
s.tiles = TileRef{ raw2 };
return s;
}
static inline __attribute__((always_inline))
void write_tile_alloc(thread const uint& el_ix, thread const Alloc& a)
{
}
static inline __attribute__((always_inline))
Alloc read_tile_alloc(thread const uint& el_ix, thread const bool& mem_ok, device Memory& v_242, constant uint& v_242BufferSize)
{
uint param = 0u;
uint param_1 = uint(int((v_242BufferSize - 8) / 4) * 4);
bool param_2 = mem_ok;
return new_alloc(param, param_1, param_2);
}
static inline __attribute__((always_inline))
Tile Tile_read(thread const Alloc& a, thread const TileRef& ref, device Memory& v_242, constant uint& v_242BufferSize)
{
uint ix = ref.offset >> uint(2);
Alloc param = a;
uint param_1 = ix + 0u;
uint raw0 = read_mem(param, param_1, v_242, v_242BufferSize);
Alloc param_2 = a;
uint param_3 = ix + 1u;
uint raw1 = read_mem(param_2, param_3, v_242, v_242BufferSize);
Tile s;
s.tile = TileSegRef{ raw0 };
s.backdrop = int(raw1);
return s;
}
static inline __attribute__((always_inline))
MallocResult malloc(thread const uint& size, device Memory& v_242, constant uint& v_242BufferSize)
{
uint _248 = atomic_fetch_add_explicit((device atomic_uint*)&v_242.mem_offset, size, memory_order_relaxed);
uint offset = _248;
MallocResult r;
r.failed = (offset + size) > uint(int((v_242BufferSize - 8) / 4) * 4);
uint param = offset;
uint param_1 = size;
bool param_2 = !r.failed;
r.alloc = new_alloc(param, param_1, param_2);
if (r.failed)
{
uint _277 = atomic_fetch_max_explicit((device atomic_uint*)&v_242.mem_error, 1u, memory_order_relaxed);
return r;
}
return r;
}
static inline __attribute__((always_inline))
void write_mem(thread const Alloc& alloc, thread const uint& offset, thread const uint& val, device Memory& v_242, constant uint& v_242BufferSize)
{
Alloc param = alloc;
uint param_1 = offset;
if (!touch_mem(param, param_1))
{
return;
}
v_242.memory[offset] = val;
}
static inline __attribute__((always_inline))
void CmdJump_write(thread const Alloc& a, thread const CmdJumpRef& ref, thread const CmdJump& s, device Memory& v_242, constant uint& v_242BufferSize)
{
uint ix = ref.offset >> uint(2);
Alloc param = a;
uint param_1 = ix + 0u;
uint param_2 = s.new_ref;
write_mem(param, param_1, param_2, v_242, v_242BufferSize);
}
static inline __attribute__((always_inline))
void Cmd_Jump_write(thread const Alloc& a, thread const CmdRef& ref, thread const CmdJump& s, device Memory& v_242, constant uint& v_242BufferSize)
{
Alloc param = a;
uint param_1 = ref.offset >> uint(2);
uint param_2 = 10u;
write_mem(param, param_1, param_2, v_242, v_242BufferSize);
Alloc param_3 = a;
CmdJumpRef param_4 = CmdJumpRef{ ref.offset + 4u };
CmdJump param_5 = s;
CmdJump_write(param_3, param_4, param_5, v_242, v_242BufferSize);
}
static inline __attribute__((always_inline))
bool alloc_cmd(thread Alloc& cmd_alloc, thread CmdRef& cmd_ref, thread uint& cmd_limit, device Memory& v_242, constant uint& v_242BufferSize)
{
if (cmd_ref.offset < cmd_limit)
{
return true;
}
uint param = 1024u;
MallocResult _762 = malloc(param, v_242, v_242BufferSize);
MallocResult new_cmd = _762;
if (new_cmd.failed)
{
return false;
}
CmdJump jump = CmdJump{ new_cmd.alloc.offset };
Alloc param_1 = cmd_alloc;
CmdRef param_2 = cmd_ref;
CmdJump param_3 = jump;
Cmd_Jump_write(param_1, param_2, param_3, v_242, v_242BufferSize);
cmd_alloc = new_cmd.alloc;
cmd_ref = CmdRef{ cmd_alloc.offset };
cmd_limit = (cmd_alloc.offset + 1024u) - 60u;
return true;
}
static inline __attribute__((always_inline))
void CmdFill_write(thread const Alloc& a, thread const CmdFillRef& ref, thread const CmdFill& s, device Memory& v_242, constant uint& v_242BufferSize)
{
uint ix = ref.offset >> uint(2);
Alloc param = a;
uint param_1 = ix + 0u;
uint param_2 = s.tile_ref;
write_mem(param, param_1, param_2, v_242, v_242BufferSize);
Alloc param_3 = a;
uint param_4 = ix + 1u;
uint param_5 = uint(s.backdrop);
write_mem(param_3, param_4, param_5, v_242, v_242BufferSize);
}
static inline __attribute__((always_inline))
void Cmd_Fill_write(thread const Alloc& a, thread const CmdRef& ref, thread const CmdFill& s, device Memory& v_242, constant uint& v_242BufferSize)
{
Alloc param = a;
uint param_1 = ref.offset >> uint(2);
uint param_2 = 1u;
write_mem(param, param_1, param_2, v_242, v_242BufferSize);
Alloc param_3 = a;
CmdFillRef param_4 = CmdFillRef{ ref.offset + 4u };
CmdFill param_5 = s;
CmdFill_write(param_3, param_4, param_5, v_242, v_242BufferSize);
}
static inline __attribute__((always_inline))
void Cmd_Solid_write(thread const Alloc& a, thread const CmdRef& ref, device Memory& v_242, constant uint& v_242BufferSize)
{
Alloc param = a;
uint param_1 = ref.offset >> uint(2);
uint param_2 = 3u;
write_mem(param, param_1, param_2, v_242, v_242BufferSize);
}
static inline __attribute__((always_inline))
void CmdStroke_write(thread const Alloc& a, thread const CmdStrokeRef& ref, thread const CmdStroke& s, device Memory& v_242, constant uint& v_242BufferSize)
{
uint ix = ref.offset >> uint(2);
Alloc param = a;
uint param_1 = ix + 0u;
uint param_2 = s.tile_ref;
write_mem(param, param_1, param_2, v_242, v_242BufferSize);
Alloc param_3 = a;
uint param_4 = ix + 1u;
uint param_5 = as_type<uint>(s.half_width);
write_mem(param_3, param_4, param_5, v_242, v_242BufferSize);
}
static inline __attribute__((always_inline))
void Cmd_Stroke_write(thread const Alloc& a, thread const CmdRef& ref, thread const CmdStroke& s, device Memory& v_242, constant uint& v_242BufferSize)
{
Alloc param = a;
uint param_1 = ref.offset >> uint(2);
uint param_2 = 2u;
write_mem(param, param_1, param_2, v_242, v_242BufferSize);
Alloc param_3 = a;
CmdStrokeRef param_4 = CmdStrokeRef{ ref.offset + 4u };
CmdStroke param_5 = s;
CmdStroke_write(param_3, param_4, param_5, v_242, v_242BufferSize);
}
static inline __attribute__((always_inline))
void write_fill(thread const Alloc& alloc, thread CmdRef& cmd_ref, thread const Tile& tile, thread const float& linewidth, device Memory& v_242, constant uint& v_242BufferSize)
{
if (linewidth < 0.0)
{
if (tile.tile.offset != 0u)
{
CmdFill cmd_fill = CmdFill{ tile.tile.offset, tile.backdrop };
Alloc param = alloc;
CmdRef param_1 = cmd_ref;
CmdFill param_2 = cmd_fill;
Cmd_Fill_write(param, param_1, param_2, v_242, v_242BufferSize);
cmd_ref.offset += 12u;
}
else
{
Alloc param_3 = alloc;
CmdRef param_4 = cmd_ref;
Cmd_Solid_write(param_3, param_4, v_242, v_242BufferSize);
cmd_ref.offset += 4u;
}
}
else
{
CmdStroke cmd_stroke = CmdStroke{ tile.tile.offset, 0.5 * linewidth };
Alloc param_5 = alloc;
CmdRef param_6 = cmd_ref;
CmdStroke param_7 = cmd_stroke;
Cmd_Stroke_write(param_5, param_6, param_7, v_242, v_242BufferSize);
cmd_ref.offset += 12u;
}
}
static inline __attribute__((always_inline))
void CmdColor_write(thread const Alloc& a, thread const CmdColorRef& ref, thread const CmdColor& s, device Memory& v_242, constant uint& v_242BufferSize)
{
uint ix = ref.offset >> uint(2);
Alloc param = a;
uint param_1 = ix + 0u;
uint param_2 = s.rgba_color;
write_mem(param, param_1, param_2, v_242, v_242BufferSize);
}
static inline __attribute__((always_inline))
void Cmd_Color_write(thread const Alloc& a, thread const CmdRef& ref, thread const CmdColor& s, device Memory& v_242, constant uint& v_242BufferSize)
{
Alloc param = a;
uint param_1 = ref.offset >> uint(2);
uint param_2 = 5u;
write_mem(param, param_1, param_2, v_242, v_242BufferSize);
Alloc param_3 = a;
CmdColorRef param_4 = CmdColorRef{ ref.offset + 4u };
CmdColor param_5 = s;
CmdColor_write(param_3, param_4, param_5, v_242, v_242BufferSize);
}
static inline __attribute__((always_inline))
void CmdLinGrad_write(thread const Alloc& a, thread const CmdLinGradRef& ref, thread const CmdLinGrad& s, device Memory& v_242, constant uint& v_242BufferSize)
{
uint ix = ref.offset >> uint(2);
Alloc param = a;
uint param_1 = ix + 0u;
uint param_2 = s.index;
write_mem(param, param_1, param_2, v_242, v_242BufferSize);
Alloc param_3 = a;
uint param_4 = ix + 1u;
uint param_5 = as_type<uint>(s.line_x);
write_mem(param_3, param_4, param_5, v_242, v_242BufferSize);
Alloc param_6 = a;
uint param_7 = ix + 2u;
uint param_8 = as_type<uint>(s.line_y);
write_mem(param_6, param_7, param_8, v_242, v_242BufferSize);
Alloc param_9 = a;
uint param_10 = ix + 3u;
uint param_11 = as_type<uint>(s.line_c);
write_mem(param_9, param_10, param_11, v_242, v_242BufferSize);
}
static inline __attribute__((always_inline))
void Cmd_LinGrad_write(thread const Alloc& a, thread const CmdRef& ref, thread const CmdLinGrad& s, device Memory& v_242, constant uint& v_242BufferSize)
{
Alloc param = a;
uint param_1 = ref.offset >> uint(2);
uint param_2 = 6u;
write_mem(param, param_1, param_2, v_242, v_242BufferSize);
Alloc param_3 = a;
CmdLinGradRef param_4 = CmdLinGradRef{ ref.offset + 4u };
CmdLinGrad param_5 = s;
CmdLinGrad_write(param_3, param_4, param_5, v_242, v_242BufferSize);
}
static inline __attribute__((always_inline))
void CmdImage_write(thread const Alloc& a, thread const CmdImageRef& ref, thread const CmdImage& s, device Memory& v_242, constant uint& v_242BufferSize)
{
uint ix = ref.offset >> uint(2);
Alloc param = a;
uint param_1 = ix + 0u;
uint param_2 = s.index;
write_mem(param, param_1, param_2, v_242, v_242BufferSize);
Alloc param_3 = a;
uint param_4 = ix + 1u;
uint param_5 = (uint(s.offset.x) & 65535u) | (uint(s.offset.y) << uint(16));
write_mem(param_3, param_4, param_5, v_242, v_242BufferSize);
}
static inline __attribute__((always_inline))
void Cmd_Image_write(thread const Alloc& a, thread const CmdRef& ref, thread const CmdImage& s, device Memory& v_242, constant uint& v_242BufferSize)
{
Alloc param = a;
uint param_1 = ref.offset >> uint(2);
uint param_2 = 7u;
write_mem(param, param_1, param_2, v_242, v_242BufferSize);
Alloc param_3 = a;
CmdImageRef param_4 = CmdImageRef{ ref.offset + 4u };
CmdImage param_5 = s;
CmdImage_write(param_3, param_4, param_5, v_242, v_242BufferSize);
}
static inline __attribute__((always_inline))
void Cmd_BeginClip_write(thread const Alloc& a, thread const CmdRef& ref, device Memory& v_242, constant uint& v_242BufferSize)
{
Alloc param = a;
uint param_1 = ref.offset >> uint(2);
uint param_2 = 8u;
write_mem(param, param_1, param_2, v_242, v_242BufferSize);
}
static inline __attribute__((always_inline))
void CmdEndClip_write(thread const Alloc& a, thread const CmdEndClipRef& ref, thread const CmdEndClip& s, device Memory& v_242, constant uint& v_242BufferSize)
{
uint ix = ref.offset >> uint(2);
Alloc param = a;
uint param_1 = ix + 0u;
uint param_2 = s.blend;
write_mem(param, param_1, param_2, v_242, v_242BufferSize);
}
static inline __attribute__((always_inline))
void Cmd_EndClip_write(thread const Alloc& a, thread const CmdRef& ref, thread const CmdEndClip& s, device Memory& v_242, constant uint& v_242BufferSize)
{
Alloc param = a;
uint param_1 = ref.offset >> uint(2);
uint param_2 = 9u;
write_mem(param, param_1, param_2, v_242, v_242BufferSize);
Alloc param_3 = a;
CmdEndClipRef param_4 = CmdEndClipRef{ ref.offset + 4u };
CmdEndClip param_5 = s;
CmdEndClip_write(param_3, param_4, param_5, v_242, v_242BufferSize);
}
static inline __attribute__((always_inline))
void Cmd_End_write(thread const Alloc& a, thread const CmdRef& ref, device Memory& v_242, constant uint& v_242BufferSize)
{
Alloc param = a;
uint param_1 = ref.offset >> uint(2);
uint param_2 = 0u;
write_mem(param, param_1, param_2, v_242, v_242BufferSize);
}
kernel void main0(constant uint* spvBufferSizeConstants [[buffer(25)]], device Memory& v_242 [[buffer(0)]], const device ConfigBuf& _854 [[buffer(1)]], const device SceneBuf& _1222 [[buffer(2)]], uint3 gl_WorkGroupID [[threadgroup_position_in_grid]], uint3 gl_LocalInvocationID [[thread_position_in_threadgroup]])
{
threadgroup uint sh_bitmaps[8][256];
threadgroup Alloc sh_part_elements[256];
threadgroup uint sh_part_count[256];
threadgroup uint sh_elements[256];
threadgroup uint sh_tile_stride[256];
threadgroup uint sh_tile_width[256];
threadgroup uint sh_tile_x0[256];
threadgroup uint sh_tile_y0[256];
threadgroup uint sh_tile_base[256];
threadgroup uint sh_tile_count[256];
constant uint& v_242BufferSize = spvBufferSizeConstants[0];
uint width_in_bins = ((_854.conf.width_in_tiles + 16u) - 1u) / 16u;
uint bin_ix = (width_in_bins * gl_WorkGroupID.y) + gl_WorkGroupID.x;
uint partition_ix = 0u;
uint n_partitions = ((_854.conf.n_elements + 256u) - 1u) / 256u;
uint th_ix = gl_LocalInvocationID.x;
uint bin_tile_x = 16u * gl_WorkGroupID.x;
uint bin_tile_y = 16u * gl_WorkGroupID.y;
uint tile_x = gl_LocalInvocationID.x % 16u;
uint tile_y = gl_LocalInvocationID.x / 16u;
uint this_tile_ix = (((bin_tile_y + tile_y) * _854.conf.width_in_tiles) + bin_tile_x) + tile_x;
Alloc param;
param.offset = _854.conf.ptcl_alloc.offset;
uint param_1 = this_tile_ix * 1024u;
uint param_2 = 1024u;
Alloc cmd_alloc = slice_mem(param, param_1, param_2);
CmdRef cmd_ref = CmdRef{ cmd_alloc.offset };
uint cmd_limit = (cmd_ref.offset + 1024u) - 60u;
uint clip_depth = 0u;
uint clip_zero_depth = 0u;
uint rd_ix = 0u;
uint wr_ix = 0u;
uint part_start_ix = 0u;
uint ready_ix = 0u;
uint drawmonoid_start = _854.conf.drawmonoid_alloc.offset >> uint(2);
uint drawtag_start = _854.conf.drawtag_offset >> uint(2);
uint drawdata_start = _854.conf.drawdata_offset >> uint(2);
uint drawinfo_start = _854.conf.drawinfo_alloc.offset >> uint(2);
bool mem_ok = v_242.mem_error == 0u;
Alloc param_3;
Alloc param_5;
uint _1154;
uint element_ix;
Alloc param_14;
uint tile_count;
uint _1453;
float linewidth;
CmdLinGrad cmd_lin;
while (true)
{
for (uint i = 0u; i < 8u; i++)
{
sh_bitmaps[i][th_ix] = 0u;
}
bool _1206;
for (;;)
{
if ((ready_ix == wr_ix) && (partition_ix < n_partitions))
{
part_start_ix = ready_ix;
uint count = 0u;
bool _1003 = th_ix < 256u;
bool _1011;
if (_1003)
{
_1011 = (partition_ix + th_ix) < n_partitions;
}
else
{
_1011 = _1003;
}
if (_1011)
{
uint in_ix = (_854.conf.bin_alloc.offset >> uint(2)) + ((((partition_ix + th_ix) * 256u) + bin_ix) * 2u);
param_3.offset = _854.conf.bin_alloc.offset;
uint param_4 = in_ix;
count = read_mem(param_3, param_4, v_242, v_242BufferSize);
param_5.offset = _854.conf.bin_alloc.offset;
uint param_6 = in_ix + 1u;
uint offset = read_mem(param_5, param_6, v_242, v_242BufferSize);
uint param_7 = offset;
uint param_8 = count * 4u;
bool param_9 = mem_ok;
sh_part_elements[th_ix] = new_alloc(param_7, param_8, param_9);
}
for (uint i_1 = 0u; i_1 < 8u; i_1++)
{
if (th_ix < 256u)
{
sh_part_count[th_ix] = count;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (th_ix < 256u)
{
if (th_ix >= (1u << i_1))
{
count += sh_part_count[th_ix - (1u << i_1)];
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
}
if (th_ix < 256u)
{
sh_part_count[th_ix] = part_start_ix + count;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
ready_ix = sh_part_count[255];
partition_ix += 256u;
}
uint ix = rd_ix + th_ix;
if (((ix >= wr_ix) && (ix < ready_ix)) && mem_ok)
{
uint part_ix = 0u;
for (uint i_2 = 0u; i_2 < 8u; i_2++)
{
uint probe = part_ix + (128u >> i_2);
if (ix >= sh_part_count[probe - 1u])
{
part_ix = probe;
}
}
if (part_ix > 0u)
{
_1154 = sh_part_count[part_ix - 1u];
}
else
{
_1154 = part_start_ix;
}
ix -= _1154;
Alloc bin_alloc = sh_part_elements[part_ix];
BinInstanceRef inst_ref = BinInstanceRef{ bin_alloc.offset };
BinInstanceRef param_10 = inst_ref;
uint param_11 = ix;
Alloc param_12 = bin_alloc;
BinInstanceRef param_13 = BinInstance_index(param_10, param_11);
BinInstance inst = BinInstance_read(param_12, param_13, v_242, v_242BufferSize);
sh_elements[th_ix] = inst.element_ix;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
wr_ix = min((rd_ix + 256u), ready_ix);
bool _1196 = (wr_ix - rd_ix) < 256u;
if (_1196)
{
_1206 = (wr_ix < ready_ix) || (partition_ix < n_partitions);
}
else
{
_1206 = _1196;
}
if (_1206)
{
continue;
}
else
{
break;
}
}
uint tag = 0u;
if ((th_ix + rd_ix) < wr_ix)
{
element_ix = sh_elements[th_ix];
tag = _1222.scene[drawtag_start + element_ix];
}
switch (tag)
{
case 68u:
case 72u:
case 276u:
case 5u:
case 37u:
{
uint drawmonoid_base = drawmonoid_start + (4u * element_ix);
uint path_ix = v_242.memory[drawmonoid_base];
param_14.offset = _854.conf.tile_alloc.offset;
PathRef param_15 = PathRef{ _854.conf.tile_alloc.offset + (path_ix * 12u) };
Path path = Path_read(param_14, param_15, v_242, v_242BufferSize);
uint stride = path.bbox.z - path.bbox.x;
sh_tile_stride[th_ix] = stride;
int dx = int(path.bbox.x) - int(bin_tile_x);
int dy = int(path.bbox.y) - int(bin_tile_y);
int x0 = clamp(dx, 0, 16);
int y0 = clamp(dy, 0, 16);
int x1 = clamp(int(path.bbox.z) - int(bin_tile_x), 0, 16);
int y1 = clamp(int(path.bbox.w) - int(bin_tile_y), 0, 16);
sh_tile_width[th_ix] = uint(x1 - x0);
sh_tile_x0[th_ix] = uint(x0);
sh_tile_y0[th_ix] = uint(y0);
tile_count = uint(x1 - x0) * uint(y1 - y0);
uint base = path.tiles.offset - (((uint(dy) * stride) + uint(dx)) * 8u);
sh_tile_base[th_ix] = base;
uint param_16 = path.tiles.offset;
uint param_17 = ((path.bbox.z - path.bbox.x) * (path.bbox.w - path.bbox.y)) * 8u;
bool param_18 = mem_ok;
Alloc path_alloc = new_alloc(param_16, param_17, param_18);
uint param_19 = th_ix;
Alloc param_20 = path_alloc;
write_tile_alloc(param_19, param_20);
break;
}
default:
{
tile_count = 0u;
break;
}
}
sh_tile_count[th_ix] = tile_count;
for (uint i_3 = 0u; i_3 < 8u; i_3++)
{
threadgroup_barrier(mem_flags::mem_threadgroup);
if (th_ix >= (1u << i_3))
{
tile_count += sh_tile_count[th_ix - (1u << i_3)];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
sh_tile_count[th_ix] = tile_count;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
uint total_tile_count = sh_tile_count[255];
for (uint ix_1 = th_ix; ix_1 < total_tile_count; ix_1 += 256u)
{
uint el_ix = 0u;
for (uint i_4 = 0u; i_4 < 8u; i_4++)
{
uint probe_1 = el_ix + (128u >> i_4);
if (ix_1 >= sh_tile_count[probe_1 - 1u])
{
el_ix = probe_1;
}
}
uint tag_1 = _1222.scene[drawtag_start + sh_elements[el_ix]];
if (el_ix > 0u)
{
_1453 = sh_tile_count[el_ix - 1u];
}
else
{
_1453 = 0u;
}
uint seq_ix = ix_1 - _1453;
uint width = sh_tile_width[el_ix];
uint x = sh_tile_x0[el_ix] + (seq_ix % width);
uint y = sh_tile_y0[el_ix] + (seq_ix / width);
bool include_tile = false;
if (mem_ok)
{
uint param_21 = el_ix;
bool param_22 = mem_ok;
Alloc param_23 = read_tile_alloc(param_21, param_22, v_242, v_242BufferSize);
TileRef param_24 = TileRef{ sh_tile_base[el_ix] + (((sh_tile_stride[el_ix] * y) + x) * 8u) };
Tile tile = Tile_read(param_23, param_24, v_242, v_242BufferSize);
bool is_clip = (tag_1 & 1u) != 0u;
bool is_blend = false;
bool _1516 = tile.tile.offset != 0u;
bool _1525;
if (!_1516)
{
_1525 = (tile.backdrop == 0) == is_clip;
}
else
{
_1525 = _1516;
}
bool _1532;
if (!_1525)
{
_1532 = is_clip && is_blend;
}
else
{
_1532 = _1525;
}
include_tile = _1532;
}
if (include_tile)
{
uint el_slice = el_ix / 32u;
uint el_mask = 1u << (el_ix & 31u);
uint _1552 = atomic_fetch_or_explicit((threadgroup atomic_uint*)&sh_bitmaps[el_slice][(y * 16u) + x], el_mask, memory_order_relaxed);
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
uint slice_ix = 0u;
uint bitmap = sh_bitmaps[0][th_ix];
while (mem_ok)
{
if (bitmap == 0u)
{
slice_ix++;
if (slice_ix == 8u)
{
break;
}
bitmap = sh_bitmaps[slice_ix][th_ix];
if (bitmap == 0u)
{
continue;
}
}
uint element_ref_ix = (slice_ix * 32u) + uint(int(spvFindLSB(bitmap)));
uint element_ix_1 = sh_elements[element_ref_ix];
bitmap &= (bitmap - 1u);
uint drawtag = _1222.scene[drawtag_start + element_ix_1];
if (clip_zero_depth == 0u)
{
uint param_25 = element_ref_ix;
bool param_26 = mem_ok;
Alloc param_27 = read_tile_alloc(param_25, param_26, v_242, v_242BufferSize);
TileRef param_28 = TileRef{ sh_tile_base[element_ref_ix] + (((sh_tile_stride[element_ref_ix] * tile_y) + tile_x) * 8u) };
Tile tile_1 = Tile_read(param_27, param_28, v_242, v_242BufferSize);
uint drawmonoid_base_1 = drawmonoid_start + (4u * element_ix_1);
uint scene_offset = v_242.memory[drawmonoid_base_1 + 2u];
uint info_offset = v_242.memory[drawmonoid_base_1 + 3u];
uint dd = drawdata_start + (scene_offset >> uint(2));
uint di = drawinfo_start + (info_offset >> uint(2));
switch (drawtag)
{
case 68u:
{
linewidth = as_type<float>(v_242.memory[di]);
Alloc param_29 = cmd_alloc;
CmdRef param_30 = cmd_ref;
uint param_31 = cmd_limit;
bool _1676 = alloc_cmd(param_29, param_30, param_31, v_242, v_242BufferSize);
cmd_alloc = param_29;
cmd_ref = param_30;
cmd_limit = param_31;
if (!_1676)
{
break;
}
Alloc param_32 = cmd_alloc;
CmdRef param_33 = cmd_ref;
Tile param_34 = tile_1;
float param_35 = linewidth;
write_fill(param_32, param_33, param_34, param_35, v_242, v_242BufferSize);
cmd_ref = param_33;
uint rgba = _1222.scene[dd];
Alloc param_36 = cmd_alloc;
CmdRef param_37 = cmd_ref;
CmdColor param_38 = CmdColor{ rgba };
Cmd_Color_write(param_36, param_37, param_38, v_242, v_242BufferSize);
cmd_ref.offset += 8u;
break;
}
case 276u:
{
Alloc param_39 = cmd_alloc;
CmdRef param_40 = cmd_ref;
uint param_41 = cmd_limit;
bool _1717 = alloc_cmd(param_39, param_40, param_41, v_242, v_242BufferSize);
cmd_alloc = param_39;
cmd_ref = param_40;
cmd_limit = param_41;
if (!_1717)
{
break;
}
linewidth = as_type<float>(v_242.memory[di]);
Alloc param_42 = cmd_alloc;
CmdRef param_43 = cmd_ref;
Tile param_44 = tile_1;
float param_45 = linewidth;
write_fill(param_42, param_43, param_44, param_45, v_242, v_242BufferSize);
cmd_ref = param_43;
cmd_lin.index = _1222.scene[dd];
cmd_lin.line_x = as_type<float>(v_242.memory[di + 1u]);
cmd_lin.line_y = as_type<float>(v_242.memory[di + 2u]);
cmd_lin.line_c = as_type<float>(v_242.memory[di + 3u]);
Alloc param_46 = cmd_alloc;
CmdRef param_47 = cmd_ref;
CmdLinGrad param_48 = cmd_lin;
Cmd_LinGrad_write(param_46, param_47, param_48, v_242, v_242BufferSize);
cmd_ref.offset += 20u;
break;
}
case 72u:
{
linewidth = as_type<float>(v_242.memory[di]);
Alloc param_49 = cmd_alloc;
CmdRef param_50 = cmd_ref;
uint param_51 = cmd_limit;
bool _1785 = alloc_cmd(param_49, param_50, param_51, v_242, v_242BufferSize);
cmd_alloc = param_49;
cmd_ref = param_50;
cmd_limit = param_51;
if (!_1785)
{
break;
}
Alloc param_52 = cmd_alloc;
CmdRef param_53 = cmd_ref;
Tile param_54 = tile_1;
float param_55 = linewidth;
write_fill(param_52, param_53, param_54, param_55, v_242, v_242BufferSize);
cmd_ref = param_53;
uint index = _1222.scene[dd];
uint raw1 = _1222.scene[dd + 1u];
int2 offset_1 = int2(int(raw1 << uint(16)) >> 16, int(raw1) >> 16);
Alloc param_56 = cmd_alloc;
CmdRef param_57 = cmd_ref;
CmdImage param_58 = CmdImage{ index, offset_1 };
Cmd_Image_write(param_56, param_57, param_58, v_242, v_242BufferSize);
cmd_ref.offset += 12u;
break;
}
case 5u:
{
bool _1838 = tile_1.tile.offset == 0u;
bool _1844;
if (_1838)
{
_1844 = tile_1.backdrop == 0;
}
else
{
_1844 = _1838;
}
if (_1844)
{
clip_zero_depth = clip_depth + 1u;
}
else
{
Alloc param_59 = cmd_alloc;
CmdRef param_60 = cmd_ref;
uint param_61 = cmd_limit;
bool _1856 = alloc_cmd(param_59, param_60, param_61, v_242, v_242BufferSize);
cmd_alloc = param_59;
cmd_ref = param_60;
cmd_limit = param_61;
if (!_1856)
{
break;
}
Alloc param_62 = cmd_alloc;
CmdRef param_63 = cmd_ref;
Cmd_BeginClip_write(param_62, param_63, v_242, v_242BufferSize);
cmd_ref.offset += 4u;
}
clip_depth++;
break;
}
case 37u:
{
clip_depth--;
Alloc param_64 = cmd_alloc;
CmdRef param_65 = cmd_ref;
uint param_66 = cmd_limit;
bool _1884 = alloc_cmd(param_64, param_65, param_66, v_242, v_242BufferSize);
cmd_alloc = param_64;
cmd_ref = param_65;
cmd_limit = param_66;
if (!_1884)
{
break;
}
Alloc param_67 = cmd_alloc;
CmdRef param_68 = cmd_ref;
Tile param_69 = tile_1;
float param_70 = -1.0;
write_fill(param_67, param_68, param_69, param_70, v_242, v_242BufferSize);
cmd_ref = param_68;
uint blend = _1222.scene[dd];
Alloc param_71 = cmd_alloc;
CmdRef param_72 = cmd_ref;
CmdEndClip param_73 = CmdEndClip{ blend };
Cmd_EndClip_write(param_71, param_72, param_73, v_242, v_242BufferSize);
cmd_ref.offset += 8u;
break;
}
}
}
else
{
switch (drawtag)
{
case 5u:
{
clip_depth++;
break;
}
case 37u:
{
if (clip_depth == clip_zero_depth)
{
clip_zero_depth = 0u;
}
clip_depth--;
break;
}
}
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
rd_ix += 256u;
if ((rd_ix >= ready_ix) && (partition_ix >= n_partitions))
{
break;
}
}
bool _1954 = (bin_tile_x + tile_x) < _854.conf.width_in_tiles;
bool _1963;
if (_1954)
{
_1963 = (bin_tile_y + tile_y) < _854.conf.height_in_tiles;
}
else
{
_1963 = _1954;
}
if (_1963)
{
Alloc param_74 = cmd_alloc;
CmdRef param_75 = cmd_ref;
Cmd_End_write(param_74, param_75, v_242, v_242BufferSize);
}
}