vello/piet-gpu/shader/binning.comp
Elias Naur 8fab45544e shader: implement clip paths
Expand the the final kernel4 stage to maintain a per-pixel mask.

Introduce two new path elements, FillMask and FillMaskInv, to fill
the mask. FillMask acts like Fill, while FillMaskInv fills the area
outside the path.

SVG clipPaths is then representable by a FillMaskInv(0.0) for every nested
path, preceded by a FillMask(1.0) to clear the mask.

The bounding box for FillMaskInv elements is the entire screen; tightening of
the bounding box is left for future work. Note that a fullscreen bounding
box is not hopelessly inefficient because completely filling a tile with
a mask is just a single CmdSolidMask per tile.

Fixes #30

Signed-off-by: Elias Naur <mail@eliasnaur.com>
2020-10-09 13:20:26 +02:00

143 lines
4.5 KiB
Plaintext

// The binning stage of the pipeline.
//
// Each workgroup processes N_TILE paths.
// Each thread processes one path and calculates a N_TILE_X x N_TILE_Y coverage mask
// based on the path bounding box to bin the paths.
#version 450
#extension GL_GOOGLE_include_directive : enable
#include "setup.h"
layout(local_size_x = N_TILE, local_size_y = 1) in;
layout(set = 0, binding = 0) buffer AnnotatedBuf {
uint[] annotated;
};
layout(set = 0, binding = 1) buffer AllocBuf {
uint n_elements; // paths
uint alloc;
};
layout(set = 0, binding = 2) buffer BinsBuf {
uint[] bins;
};
#include "annotated.h"
#include "bins.h"
// scale factors useful for converting coordinates to bins
#define SX (1.0 / float(N_TILE_X * TILE_WIDTH_PX))
#define SY (1.0 / float(N_TILE_Y * TILE_HEIGHT_PX))
// Constant not available in GLSL. Also consider uintBitsToFloat(0x7f800000)
#define INFINITY (1.0 / 0.0)
// Note: cudaraster has N_TILE + 1 to cut down on bank conflicts.
// Bitmaps are sliced (256bit into 8 (N_SLICE) 32bit submaps)
shared uint bitmaps[N_SLICE][N_TILE];
shared uint count[N_SLICE][N_TILE];
shared uint sh_chunk_start[N_TILE];
void main() {
uint my_n_elements = n_elements;
uint my_partition = gl_WorkGroupID.x;
for (uint i = 0; i < N_SLICE; i++) {
bitmaps[i][gl_LocalInvocationID.x] = 0;
}
barrier();
// Read inputs and determine coverage of bins
uint element_ix = my_partition * N_TILE + gl_LocalInvocationID.x;
AnnotatedRef ref = AnnotatedRef(element_ix * Annotated_size);
uint tag = Annotated_Nop;
if (element_ix < my_n_elements) {
tag = Annotated_tag(ref);
}
int x0 = 0, y0 = 0, x1 = 0, y1 = 0;
float my_right_edge = INFINITY;
switch (tag) {
case Annotated_Fill:
case Annotated_FillMask:
case Annotated_FillMaskInv:
case Annotated_Stroke:
// Note: we take advantage of the fact that fills and strokes
// have compatible layout.
AnnoFill fill = Annotated_Fill_read(ref);
x0 = int(floor(fill.bbox.x * SX));
y0 = int(floor(fill.bbox.y * SY));
x1 = int(ceil(fill.bbox.z * SX));
y1 = int(ceil(fill.bbox.w * SY));
// It probably makes more sense to track x1, to avoid having to redo
// the rounding to tile coords.
my_right_edge = fill.bbox.z;
break;
}
// At this point, we run an iterator over the coverage area,
// trying to keep divergence low.
// Right now, it's just a bbox, but we'll get finer with
// segments.
x0 = clamp(x0, 0, N_TILE_X);
x1 = clamp(x1, x0, N_TILE_X);
y0 = clamp(y0, 0, N_TILE_Y);
y1 = clamp(y1, y0, N_TILE_Y);
if (x0 == x1) y1 = y0;
int x = x0, y = y0;
uint my_slice = gl_LocalInvocationID.x / 32;
uint my_mask = 1 << (gl_LocalInvocationID.x & 31);
while (y < y1) {
atomicOr(bitmaps[my_slice][y * N_TILE_X + x], my_mask);
x++;
if (x == x1) {
x = x0;
y++;
}
}
barrier();
// Allocate output segments.
uint element_count = 0;
for (uint i = 0; i < N_SLICE; i++) {
element_count += bitCount(bitmaps[i][gl_LocalInvocationID.x]);
count[i][gl_LocalInvocationID.x] = element_count;
}
// element_count is number of elements covering bin for this invocation.
uint chunk_start = 0;
if (element_count != 0) {
// TODO: aggregate atomic adds (subgroup is probably fastest)
chunk_start = atomicAdd(alloc, element_count * BinInstance_size);
sh_chunk_start[gl_LocalInvocationID.x] = chunk_start;
}
// Note: it might be more efficient for reading to do this in the
// other order (each bin is a contiguous sequence of partitions)
uint out_ix = (my_partition * N_TILE + gl_LocalInvocationID.x) * 2;
bins[out_ix] = element_count;
bins[out_ix + 1] = chunk_start;
barrier();
// Use similar strategy as Laine & Karras paper; loop over bbox of bins
// touched by this element
x = x0;
y = y0;
while (y < y1) {
uint bin_ix = y * N_TILE_X + x;
uint out_mask = bitmaps[my_slice][bin_ix];
if ((out_mask & my_mask) != 0) {
uint idx = bitCount(out_mask & (my_mask - 1));
if (my_slice > 0) {
idx += count[my_slice - 1][bin_ix];
}
uint out_offset = sh_chunk_start[bin_ix] + idx * BinInstance_size;
BinInstance_write(BinInstanceRef(out_offset), BinInstance(element_ix, my_right_edge));
}
x++;
if (x == x1) {
x = x0;
y++;
}
}
}